lokinet/llarp/nodedb.cpp

517 lines
12 KiB
C++
Raw Normal View History

#include <nodedb.hpp>
2019-01-13 14:00:50 +00:00
#include <crypto/crypto.hpp>
#include <crypto/types.hpp>
2018-12-12 01:55:30 +00:00
#include <router_contact.hpp>
#include <util/buffer.hpp>
#include <util/encode.hpp>
#include <util/fs.hpp>
2019-09-01 12:10:49 +00:00
#include <util/logging/logger.hpp>
#include <util/mem.hpp>
2019-09-01 13:26:16 +00:00
#include <util/thread/logic.hpp>
#include <util/str.hpp>
#include <dht/kademlia.hpp>
#include <algorithm>
#include <fstream>
2018-06-10 14:05:48 +00:00
#include <unordered_map>
2019-07-30 23:42:13 +00:00
#include <utility>
2018-05-30 00:40:02 +00:00
2018-06-13 13:09:19 +00:00
static const char skiplist_subdirs[] = "0123456789abcdef";
2018-08-02 23:36:34 +00:00
static const std::string RC_FILE_EXT = ".signed";
2018-05-30 00:40:02 +00:00
2019-07-30 23:42:13 +00:00
llarp_nodedb::NetDBEntry::NetDBEntry(llarp::RouterContact value)
: rc(std::move(value)), inserted(llarp::time_now_ms())
{
}
bool
llarp_nodedb::Remove(const llarp::RouterID& pk)
{
bool removed = false;
RemoveIf([&](const llarp::RouterContact& rc) -> bool {
if (rc.pubkey == pk)
{
removed = true;
return true;
}
return false;
});
return removed;
}
2018-05-16 18:13:18 +00:00
void
llarp_nodedb::Clear()
{
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
llarp::util::Lock lock(access);
entries.clear();
}
2018-04-08 12:18:16 +00:00
bool
llarp_nodedb::Get(const llarp::RouterID& pk, llarp::RouterContact& result)
{
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
llarp::util::Lock l(access);
auto itr = entries.find(pk);
if (itr == entries.end())
return false;
result = itr->second.rc;
return true;
}
void
KillRCJobs(const std::set<std::string>& files)
{
for (const auto& file : files)
fs::remove(file);
}
void
llarp_nodedb::RemoveIf(std::function<bool(const llarp::RouterContact& rc)> filter)
{
std::set<std::string> files;
{
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
llarp::util::Lock l(access);
auto itr = entries.begin();
while (itr != entries.end())
{
if (filter(itr->second.rc))
{
files.insert(getRCFilePath(itr->second.rc.pubkey));
itr = entries.erase(itr);
}
else
++itr;
}
}
disk(std::bind(&KillRCJobs, files));
}
bool
llarp_nodedb::Has(const llarp::RouterID& pk)
{
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
llarp::util::Lock lock(access);
return entries.find(pk) != entries.end();
}
2018-06-14 17:35:12 +00:00
llarp::RouterContact
llarp_nodedb::FindClosestTo(const llarp::dht::Key_t& location)
{
llarp::RouterContact rc;
const llarp::dht::XorMetric compare(location);
visit([&rc, compare](const auto& otherRC) -> bool {
if (rc.pubkey.IsZero())
{
rc = otherRC;
return true;
}
if (compare(
llarp::dht::Key_t{otherRC.pubkey.as_array()}, llarp::dht::Key_t{rc.pubkey.as_array()}))
rc = otherRC;
return true;
});
return rc;
}
std::vector<llarp::RouterContact>
llarp_nodedb::FindClosestTo(const llarp::dht::Key_t& location, uint32_t numRouters)
{
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
llarp::util::Lock lock(access);
std::vector<const llarp::RouterContact*> all;
all.reserve(entries.size());
for (auto& entry : entries)
{
all.push_back(&entry.second.rc);
}
auto it_mid = numRouters < all.size() ? all.begin() + numRouters : all.end();
std::partial_sort(
all.begin(),
it_mid,
all.end(),
[compare = llarp::dht::XorMetric{location}](auto* a, auto* b) { return compare(*a, *b); });
std::vector<llarp::RouterContact> closest;
closest.reserve(numRouters);
for (auto it = all.begin(); it != it_mid; ++it)
2020-02-14 20:21:14 +00:00
closest.push_back(**it);
return closest;
}
/// skiplist directory is hex encoded first nibble
/// skiplist filename is <base32encoded>.snode.signed
std::string
llarp_nodedb::getRCFilePath(const llarp::RouterID& pubkey) const
{
char ftmp[68] = {0};
const char* hexname = llarp::HexEncode<llarp::AlignedBuffer<32>, decltype(ftmp)>(pubkey, ftmp);
std::string hexString(hexname);
std::string skiplistDir;
llarp::RouterID r(pubkey);
std::string fname = r.ToString();
skiplistDir += hexString[0];
fname += RC_FILE_EXT;
fs::path filepath = nodePath / skiplistDir / fname;
return filepath.string();
}
void
llarp_nodedb::InsertAsync(
llarp::RouterContact rc,
std::shared_ptr<llarp::Logic> logic,
std::function<void(void)> completionHandler)
{
disk([this, rc, logic, completionHandler]() {
this->Insert(rc);
if (logic && completionHandler)
{
LogicCall(logic, completionHandler);
}
});
}
bool
llarp_nodedb::UpdateAsyncIfNewer(
llarp::RouterContact rc,
std::shared_ptr<llarp::Logic> logic,
std::function<void(void)> completionHandler)
{
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
llarp::util::Lock lock(access);
auto itr = entries.find(rc.pubkey);
if (itr == entries.end() || itr->second.rc.OtherIsNewer(rc))
{
InsertAsync(rc, logic, completionHandler);
return true;
}
if (itr != entries.end())
{
// insertion time is set on...insertion. But it should be updated here
// even if there is no insertion of a new RC, to show that the existing one
// is not "stale"
itr->second.inserted = llarp::time_now_ms();
}
return false;
}
/// insert
bool
llarp_nodedb::Insert(const llarp::RouterContact& rc)
{
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
llarp::util::Lock lock(access);
auto itr = entries.find(rc.pubkey.as_array());
if (itr != entries.end())
entries.erase(itr);
entries.emplace(rc.pubkey.as_array(), rc);
LogDebug(
"Added or updated RC for ",
llarp::RouterID(rc.pubkey),
" to nodedb. Current nodedb count is: ",
entries.size());
return true;
}
2018-05-30 00:40:02 +00:00
ssize_t
llarp_nodedb::Load(const fs::path& path)
{
std::error_code ec;
if (!fs::exists(path, ec))
2018-06-13 12:58:51 +00:00
{
return -1;
2018-06-13 12:58:51 +00:00
}
ssize_t loaded = 0;
2018-06-13 12:58:51 +00:00
for (const char& ch : skiplist_subdirs)
2018-06-13 11:37:44 +00:00
{
if (!ch)
continue;
std::string p;
p += ch;
fs::path sub = path / p;
2018-05-30 00:40:02 +00:00
ssize_t l = loadSubdir(sub);
if (l > 0)
loaded += l;
2018-05-30 00:40:02 +00:00
}
2020-01-14 17:01:41 +00:00
m_NextSaveToDisk = llarp::time_now_ms() + m_SaveInterval;
return loaded;
}
2018-05-30 00:40:02 +00:00
void
llarp_nodedb::SaveAll()
{
std::array<byte_t, MAX_RC_SIZE> tmp;
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
llarp::util::Lock lock(access);
for (const auto& item : entries)
{
llarp_buffer_t buf(tmp);
if (!item.second.rc.BEncode(&buf))
continue;
buf.sz = buf.cur - buf.base;
const auto filepath = getRCFilePath(item.second.rc.pubkey);
auto optional_ofs = llarp::util::OpenFileStream<std::ofstream>(
filepath, std::ofstream::out | std::ofstream::binary | std::ofstream::trunc);
if (!optional_ofs)
2019-06-24 16:39:03 +00:00
continue;
auto& ofs = *optional_ofs;
ofs.write((char*)buf.base, buf.sz);
ofs.flush();
ofs.close();
}
}
2020-01-14 17:01:41 +00:00
bool
llarp_nodedb::ShouldSaveToDisk(llarp_time_t now) const
{
if (now == 0s)
2020-01-14 17:01:41 +00:00
now = llarp::time_now_ms();
2020-02-24 19:40:45 +00:00
return m_NextSaveToDisk > 0s && m_NextSaveToDisk <= now;
2020-01-14 17:01:41 +00:00
}
void
llarp_nodedb::AsyncFlushToDisk()
{
disk(std::bind(&llarp_nodedb::SaveAll, this));
2020-01-14 17:01:41 +00:00
m_NextSaveToDisk = llarp::time_now_ms() + m_SaveInterval;
}
ssize_t
llarp_nodedb::loadSubdir(const fs::path& dir)
{
ssize_t sz = 0;
llarp::util::IterDir(dir, [&](const fs::path& f) -> bool {
if (fs::is_regular_file(f) && loadfile(f))
sz++;
return true;
});
return sz;
}
2018-04-30 16:14:20 +00:00
bool
llarp_nodedb::loadfile(const fs::path& fpath)
{
if (fpath.extension() != RC_FILE_EXT)
return false;
llarp::RouterContact rc;
if (!rc.Read(fpath))
{
llarp::LogError("failed to read file ", fpath);
return false;
2018-04-08 12:18:16 +00:00
}
if (!rc.Verify(llarp::time_now_ms()))
2018-05-30 00:40:02 +00:00
{
llarp::LogError(fpath, " contains invalid RC");
return false;
2018-05-30 00:40:02 +00:00
}
{
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
llarp::util::Lock lock(access);
entries.emplace(rc.pubkey.as_array(), rc);
2018-04-08 12:18:16 +00:00
}
return true;
}
2018-04-30 16:14:20 +00:00
void
llarp_nodedb::visit(std::function<bool(const llarp::RouterContact&)> visit)
{
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
llarp::util::Lock lock(access);
auto itr = entries.begin();
while (itr != entries.end())
{
if (!visit(itr->second.rc))
return;
++itr;
}
}
void
2019-06-20 14:00:04 +00:00
llarp_nodedb::VisitInsertedBefore(
std::function<void(const llarp::RouterContact&)> visit, llarp_time_t insertedAfter)
{
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
llarp::util::Lock lock(access);
auto itr = entries.begin();
while (itr != entries.end())
{
if (itr->second.inserted < insertedAfter)
visit(itr->second.rc);
++itr;
}
}
void
llarp_nodedb::RemoveStaleRCs(const std::set<llarp::RouterID>& keep, llarp_time_t cutoff)
{
std::set<llarp::RouterID> removeStale;
// remove stale routers
VisitInsertedBefore(
[&](const llarp::RouterContact& rc) {
if (keep.find(rc.pubkey) != keep.end())
return;
LogInfo("removing stale router: ", llarp::RouterID(rc.pubkey));
removeStale.insert(rc.pubkey);
},
cutoff);
RemoveIf([&removeStale](const llarp::RouterContact& rc) -> bool {
return removeStale.count(rc.pubkey) > 0;
});
}
// write it to disk
2018-06-13 11:37:44 +00:00
void
disk_threadworker_setRC(llarp_async_verify_rc* verify_request)
2018-06-13 11:37:44 +00:00
{
2018-08-30 18:48:43 +00:00
verify_request->valid = verify_request->nodedb->Insert(verify_request->rc);
if (verify_request->logic)
{
LogicCall(verify_request->logic, [verify_request]() {
if (verify_request->hook)
verify_request->hook(verify_request);
});
}
}
// we run the crypto verify in the crypto threadpool worker
2018-06-13 11:37:44 +00:00
void
crypto_threadworker_verifyrc(llarp_async_verify_rc* verify_request)
{
2018-09-06 11:46:19 +00:00
llarp::RouterContact rc = verify_request->rc;
verify_request->valid = rc.Verify(llarp::time_now_ms());
// if it's valid we need to set it
if (verify_request->valid && rc.IsPublicRouter())
{
if (verify_request->disk)
2020-01-12 12:29:36 +00:00
{
llarp::LogDebug("RC is valid, saving to disk");
verify_request->disk(std::bind(&disk_threadworker_setRC, verify_request));
2020-01-12 12:29:36 +00:00
return;
}
}
2020-01-12 12:29:36 +00:00
// callback to logic thread
LogicCall(verify_request->logic, [verify_request]() {
if (verify_request->hook)
verify_request->hook(verify_request);
});
2018-06-13 12:58:51 +00:00
}
2020-01-12 12:29:36 +00:00
void
llarp_nodedb_async_verify(struct llarp_async_verify_rc* job)
2020-01-12 12:29:36 +00:00
{
job->worker(std::bind(&crypto_threadworker_verifyrc, job));
2018-06-13 12:58:51 +00:00
}
void
llarp_nodedb::ensure_dir(const fs::path& nodedbDir)
{
if (not fs::exists(nodedbDir))
{
// if the old 'netdb' directory exists, move it to this one
fs::path parent = nodedbDir.parent_path();
fs::path old = parent / "netdb";
if (fs::exists(old))
fs::rename(old, nodedbDir);
else
fs::create_directory(nodedbDir);
}
2018-04-08 12:18:16 +00:00
if (not fs::is_directory(nodedbDir))
throw std::runtime_error(llarp::stringify("nodedb ", nodedbDir, " is not a directory"));
2018-04-30 16:14:20 +00:00
for (const char& ch : skiplist_subdirs)
{
// this seems to be a problem on all targets
2018-08-02 20:50:16 +00:00
// perhaps cpp17::fs is just as screwed-up
// attempting to create a folder with no name
// what does this mean...?
if (!ch)
continue;
fs::path sub = nodedbDir / std::string(&ch, 1);
fs::create_directory(sub);
2018-04-08 12:18:16 +00:00
}
2018-04-30 16:14:20 +00:00
}
ssize_t
llarp_nodedb::LoadAll()
{
return Load(nodePath.c_str());
2018-04-30 16:14:20 +00:00
}
2018-05-30 20:56:47 +00:00
2018-06-19 17:11:24 +00:00
size_t
llarp_nodedb::num_loaded() const
{
std::shared_lock l{access};
return entries.size();
}
2018-11-14 18:02:27 +00:00
bool
llarp_nodedb::select_random_exit(llarp::RouterContact& result)
2018-11-14 18:02:27 +00:00
{
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
llarp::util::Lock lock(access);
const auto sz = entries.size();
auto itr = entries.begin();
if (sz < 3)
2018-11-14 18:02:27 +00:00
return false;
auto idx = llarp::randint() % sz;
if (idx)
2018-11-14 18:02:27 +00:00
std::advance(itr, idx - 1);
while (itr != entries.end())
2018-11-14 18:02:27 +00:00
{
if (itr->second.rc.IsExit())
2018-11-14 18:02:27 +00:00
{
result = itr->second.rc;
2018-11-14 18:02:27 +00:00
return true;
}
++itr;
}
// wrap around
itr = entries.begin();
while (idx--)
2018-11-14 18:02:27 +00:00
{
if (itr->second.rc.IsExit())
2018-11-14 18:02:27 +00:00
{
result = itr->second.rc;
2018-11-14 18:02:27 +00:00
return true;
}
++itr;
}
return false;
}
bool
llarp_nodedb::select_random_hop_excluding(
llarp::RouterContact& result, const std::set<llarp::RouterID>& exclude)
{
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
llarp::util::Lock lock(access);
/// checking for "guard" status for N = 0 is done by caller inside of
/// pathbuilder's scope
const size_t sz = entries.size();
if (sz < 3)
{
return false;
}
2020-03-10 16:19:24 +00:00
const size_t pos = llarp::randint() % sz;
const auto start = std::next(entries.begin(), pos);
for (auto itr = start; itr != entries.end(); ++itr)
{
if (exclude.count(itr->first) == 0 and itr->second.rc.IsPublicRouter())
{
result = itr->second.rc;
return true;
}
}
for (auto itr = entries.begin(); itr != start; ++itr)
{
if (exclude.count(itr->first) == 0 and itr->second.rc.IsPublicRouter())
{
2020-03-11 20:25:19 +00:00
result = itr->second.rc;
return true;
}
}
return false;
}