2021-03-10 15:11:42 +00:00
|
|
|
#pragma once
|
|
|
|
|
|
|
|
#include "address.hpp"
|
|
|
|
#include "connection.hpp"
|
|
|
|
#include "io_result.hpp"
|
|
|
|
#include "null_crypto.hpp"
|
|
|
|
#include "packet.hpp"
|
|
|
|
#include "stream.hpp"
|
2021-03-12 13:50:21 +00:00
|
|
|
#include "uvw/async.h"
|
2021-03-10 15:11:42 +00:00
|
|
|
|
|
|
|
#include <chrono>
|
|
|
|
#include <map>
|
|
|
|
#include <memory>
|
|
|
|
#include <queue>
|
|
|
|
#include <unordered_map>
|
2021-03-12 13:50:21 +00:00
|
|
|
|
2021-03-10 15:11:42 +00:00
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
#include <uvw/loop.h>
|
|
|
|
#include <uvw/poll.h>
|
|
|
|
#include <uvw/timer.h>
|
|
|
|
|
2021-03-12 13:50:21 +00:00
|
|
|
#include <llarp/service/convotag.hpp>
|
|
|
|
|
|
|
|
namespace llarp::service
|
|
|
|
{
|
|
|
|
struct Endpoint;
|
|
|
|
} // namespace llarp::service
|
|
|
|
|
|
|
|
namespace llarp::net
|
|
|
|
{
|
|
|
|
struct IPPacket;
|
|
|
|
}
|
2021-03-10 15:11:42 +00:00
|
|
|
|
|
|
|
namespace llarp::quic
|
|
|
|
{
|
|
|
|
using namespace std::literals;
|
|
|
|
|
|
|
|
inline constexpr auto IDLE_TIMEOUT = 5min;
|
|
|
|
|
|
|
|
class Endpoint
|
|
|
|
{
|
|
|
|
protected:
|
2021-03-12 13:50:21 +00:00
|
|
|
/// the service endpoint we are owned by
|
|
|
|
service::Endpoint* const parent;
|
2021-03-10 15:11:42 +00:00
|
|
|
// The current outgoing IP ecn value for the socket
|
|
|
|
uint8_t ecn_curr = 0;
|
|
|
|
|
2021-03-12 13:50:21 +00:00
|
|
|
/// local "address" just a blank
|
|
|
|
Address local{};
|
|
|
|
|
2021-03-10 15:11:42 +00:00
|
|
|
std::shared_ptr<uvw::TimerHandle> expiry_timer;
|
|
|
|
std::shared_ptr<uvw::Loop> loop;
|
|
|
|
|
|
|
|
// Max theoretical size of a UDP packet is 2^16-1 minus IP/UDP header overhead
|
|
|
|
static constexpr size_t max_buf_size = 64 * 1024;
|
|
|
|
// Max size of a UDP packet that we'll send
|
|
|
|
static constexpr size_t max_pkt_size_v4 = NGTCP2_MAX_PKTLEN_IPV4;
|
|
|
|
static constexpr size_t max_pkt_size_v6 = NGTCP2_MAX_PKTLEN_IPV6;
|
|
|
|
|
|
|
|
using primary_conn_ptr = std::shared_ptr<Connection>;
|
|
|
|
using alias_conn_ptr = std::weak_ptr<Connection>;
|
|
|
|
|
|
|
|
// Connections. When a client establishes a new connection it chooses its own source connection
|
|
|
|
// ID and a destination connection ID and sends them to the server.
|
|
|
|
//
|
|
|
|
// This container stores the primary Connection instance as a shared_ptr, and any connection
|
|
|
|
// aliases as weak_ptrs referencing the primary instance (so that we don't have to double a
|
|
|
|
// double-hash lookup on incoming packets, since those frequently use aliases).
|
|
|
|
//
|
|
|
|
// The destination connection ID should be entirely random and can be up to 160 bits, but the
|
|
|
|
// source connection ID does not have to be (i.e. it can encode some information, if desired).
|
|
|
|
//
|
|
|
|
// The server is going to include in the response:
|
|
|
|
// - destination connection ID equal to the client's source connection ID
|
|
|
|
// - a new random source connection ID. (We don't use the client's destination ID but generate
|
|
|
|
// our own). Like the clients source ID, this can contain embedded info.
|
|
|
|
//
|
|
|
|
// The client stores this, and so we end up with client-scid == server-dcid, and client-dcid ==
|
|
|
|
// server-scid, where each side chose its own source connection ID.
|
|
|
|
//
|
|
|
|
// Ultimately, we store here our own {source connection ID -> Connection} pairs (or
|
|
|
|
// equivalently, on incoming packets, the key will be the packet's dest conn ID).
|
|
|
|
std::unordered_map<ConnectionID, std::variant<primary_conn_ptr, alias_conn_ptr>> conns;
|
|
|
|
|
|
|
|
using conns_iterator = decltype(conns)::iterator;
|
|
|
|
|
|
|
|
// Connections that are draining (i.e. we are dropping, but need to keep around for a while
|
|
|
|
// to catch and drop lagged packets). The time point is the scheduled removal time.
|
|
|
|
std::queue<std::pair<ConnectionID, std::chrono::steady_clock::time_point>> draining;
|
|
|
|
|
|
|
|
NullCrypto null_crypto;
|
|
|
|
|
|
|
|
// Random data that we hash together with a CID to make a stateless reset token
|
|
|
|
std::array<std::byte, 32> static_secret;
|
|
|
|
|
|
|
|
friend class Connection;
|
|
|
|
|
|
|
|
// Wires up an endpoint connection.
|
2021-03-12 13:50:21 +00:00
|
|
|
Endpoint(service::Endpoint* ep, std::shared_ptr<uvw::Loop> loop);
|
2021-03-10 15:11:42 +00:00
|
|
|
|
|
|
|
virtual ~Endpoint();
|
|
|
|
|
|
|
|
// Version & connection id info that we can potentially extract when decoding a packet
|
|
|
|
struct version_info
|
|
|
|
{
|
|
|
|
uint32_t version;
|
|
|
|
const uint8_t* dcid;
|
|
|
|
size_t dcid_len;
|
|
|
|
const uint8_t* scid;
|
|
|
|
size_t scid_len;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Called to handle an incoming packet
|
|
|
|
virtual void
|
|
|
|
handle_packet(const Packet& p) = 0;
|
|
|
|
|
|
|
|
// Internal method: handles initial common packet decoding, returns the connection ID or nullopt
|
|
|
|
// if decoding failed.
|
|
|
|
std::optional<ConnectionID>
|
|
|
|
handle_packet_init(const Packet& p);
|
|
|
|
// Internal method: handles a packet sent to the given connection
|
|
|
|
void
|
|
|
|
handle_conn_packet(Connection& c, const Packet& p);
|
|
|
|
|
|
|
|
// Reads a packet and handles various error conditions. Returns an io_result. Note that it is
|
|
|
|
// possible for the conn_it to be erased from `conns` if the error code is anything other than
|
|
|
|
// success (0) or NGTCP2_ERR_RETRY.
|
|
|
|
io_result
|
|
|
|
read_packet(const Packet& p, Connection& conn);
|
|
|
|
|
|
|
|
// Sets up the ECN IP field (IP_TOS for IPv4) for the next outgoing packet sent via
|
|
|
|
// send_packet(). This does the actual syscall (if ECN is different than currently set), and is
|
|
|
|
// typically called implicitly via send_packet().
|
|
|
|
void
|
|
|
|
update_ecn(uint32_t ecn);
|
|
|
|
|
|
|
|
// Sends a packet to `to` containing `data`. Returns a non-error io_result on success,
|
|
|
|
// an io_result with .error_code set to the errno of the failure on failure.
|
|
|
|
io_result
|
|
|
|
send_packet(const Address& to, bstring_view data, uint32_t ecn);
|
|
|
|
|
|
|
|
// Wrapper around the above that takes a regular std::string_view (i.e. of chars) and recasts
|
|
|
|
// it to an string_view of std::bytes.
|
|
|
|
io_result
|
|
|
|
send_packet(const Address& to, std::string_view data, uint32_t ecn)
|
|
|
|
{
|
|
|
|
return send_packet(
|
|
|
|
to, bstring_view{reinterpret_cast<const std::byte*>(data.data()), data.size()}, ecn);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Another wrapper taking a vector
|
|
|
|
io_result
|
|
|
|
send_packet(const Address& to, const std::vector<std::byte>& data, uint32_t ecn)
|
|
|
|
{
|
|
|
|
return send_packet(to, bstring_view{data.data(), data.size()}, ecn);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
send_version_negotiation(const version_info& vi, const Address& source);
|
|
|
|
|
|
|
|
// Looks up a connection. Returns a shared_ptr (either copied for a primary connection, or
|
|
|
|
// locked from an alias's weak pointer) if the connection was found or nullptr if not; and a
|
|
|
|
// bool indicating whether this connection ID was an alias (true) or not (false). [Note: the
|
|
|
|
// alias value can be true even if the shared_ptr is null in the case of an expired alias that
|
|
|
|
// hasn't yet been cleaned up].
|
|
|
|
std::pair<std::shared_ptr<Connection>, bool>
|
|
|
|
get_conn(const ConnectionID& cid);
|
|
|
|
|
|
|
|
// Called to start closing (or continue closing) a connection by sending a connection close
|
|
|
|
// response to any incoming packets.
|
|
|
|
//
|
|
|
|
// Takes the iterator to the connection pair from `conns` and optional error parameters: if
|
|
|
|
// `application` is false (the default) then we do a hard connection close because of transport
|
|
|
|
// error, if true we do a graceful application close. For application closes the code is
|
|
|
|
// application-defined; for hard closes the code should be one of the NGTCP2_*_ERROR values.
|
|
|
|
void
|
|
|
|
close_connection(Connection& conn, uint64_t code = NGTCP2_NO_ERROR, bool application = false);
|
|
|
|
|
|
|
|
/// Puts a connection into draining mode (i.e. after getting a connection close). This will
|
|
|
|
/// keep the connection registered for the recommended 3*Probe Timeout, during which we drop
|
|
|
|
/// packets that use the connection id and after which we will forget about it.
|
|
|
|
void
|
|
|
|
start_draining(Connection& conn);
|
|
|
|
|
|
|
|
void
|
|
|
|
check_timeouts();
|
|
|
|
|
|
|
|
/// Deletes a connection from `conns`; if the connecion is a primary connection shared pointer
|
|
|
|
/// then it is removed and clean_alias_conns() is immediately called to remove any aliases to
|
|
|
|
/// the connection. If the given connection is an alias connection then it is removed but no
|
|
|
|
/// cleanup is performed. Returns true if something was removed, false if the connection was
|
|
|
|
/// not found.
|
|
|
|
bool
|
|
|
|
delete_conn(const ConnectionID& cid);
|
|
|
|
|
|
|
|
/// Removes any connection id aliases that no longer have associated Connections.
|
|
|
|
void
|
|
|
|
clean_alias_conns();
|
|
|
|
|
|
|
|
/// Creates a new, unused connection ID alias for the given connection; adds the alias to
|
|
|
|
/// `conns` and returns the ConnectionID.
|
|
|
|
ConnectionID
|
|
|
|
add_connection_id(Connection& conn, size_t cid_length = ConnectionID::max_size());
|
|
|
|
|
|
|
|
public:
|
|
|
|
// Makes a deterministic stateless reset token for the given connection ID. Writes it to dest
|
|
|
|
// (which must have NGTCP2_STATELESS_RESET_TOKENLEN bytes available).
|
|
|
|
void
|
|
|
|
make_stateless_reset_token(const ConnectionID& cid, unsigned char* dest);
|
|
|
|
|
|
|
|
// Default stream buffer size for streams opened through this endpoint.
|
|
|
|
size_t default_stream_buffer_size = 64 * 1024;
|
|
|
|
|
|
|
|
// Gets a reference to the UV event loop
|
|
|
|
uvw::Loop&
|
|
|
|
get_loop()
|
|
|
|
{
|
|
|
|
return *loop;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace llarp::quic
|