lokinet/llarp/link/server.cpp

505 lines
12 KiB
C++
Raw Normal View History

#include "server.hpp"
#include <llarp/ev/ev.hpp>
#include <llarp/ev/udp_handle.hpp>
#include <llarp/crypto/crypto.hpp>
#include <llarp/config/key_manager.hpp>
#include <memory>
#include <llarp/util/fs.hpp>
2019-08-29 11:45:58 +00:00
#include <utility>
2019-11-28 20:41:02 +00:00
#include <unordered_set>
#include <llarp/router/abstractrouter.hpp>
2020-02-24 19:40:45 +00:00
static constexpr auto LINK_LAYER_TICK_INTERVAL = 100ms;
namespace llarp
{
ILinkLayer::ILinkLayer(
std::shared_ptr<KeyManager> keyManager,
GetRCFunc getrc,
LinkMessageHandler handler,
SignBufferFunc signbuf,
BeforeConnectFunc_t before,
SessionEstablishedHandler establishedSession,
SessionRenegotiateHandler reneg,
TimeoutHandler timeout,
SessionClosedHandler closed,
PumpDoneHandler pumpDone,
WorkerFunc_t work)
2019-08-29 11:45:58 +00:00
: HandleMessage(std::move(handler))
, HandleTimeout(std::move(timeout))
, Sign(std::move(signbuf))
, GetOurRC(std::move(getrc))
, BeforeConnect(std::move(before))
2019-08-29 11:45:58 +00:00
, SessionEstablished(std::move(establishedSession))
, SessionClosed(std::move(closed))
, SessionRenegotiate(std::move(reneg))
2019-11-04 18:53:53 +00:00
, PumpDone(std::move(pumpDone))
, QueueWork(std::move(work))
, m_RouterEncSecret(keyManager->encryptionKey)
, m_SecretKey(keyManager->transportKey)
Config file improvements (#1397) * Config file API/comment improvements API improvements: ================= Make the config API use position-independent tag parameters (Required, Default{123}, MultiValue) rather than a sequence of bools with overloads. For example, instead of: conf.defineOption<int>("a", "b", false, true, 123, [] { ... }); you now write: conf.defineOption<int>("a", "b", MultiValue, Default{123}, [] { ... }); The tags are: - Required - MultiValue - Default{value} plus new abilities (see below): - Hidden - RelayOnly - ClientOnly - Comment{"line1", "line2", "line3"} Made option definition more powerful: ===================================== - `Hidden` allows you to define an option that won't show up in the generated config file if it isn't set. - `RelayOnly`/`ClientOnly` sets up an option that is only accepted and only shows up for relay or client configs. (If neither is specified the option shows up in both modes). - `Comment{...}` lets the option comments be specified as part of the defineOption. Comment improvements ==================== - Rewrote comments for various options to expand on details. - Inlined all the comments with the option definitions. - Several options that were missing comments got comments added. - Made various options for deprecated and or internal options hidden by default so that they don't show up in a default config file. - show the section comment (but not option comments) *after* the [section] tag instead of before it as it makes more sense that way (particularly for the [bind] section which has a new long comment to describe how it works). Disable profiling by default ============================ We had this weird state where we use and store profiling by default but never *load* it when starting up. This commit makes us just not use profiling at all unless explicitly enabled. Other misc changes: =================== - change default worker threads to 0 (= num cpus) instead of 1, and fix it to allow 0. - Actually apply worker-threads option - fixed default data-dir value erroneously having quotes around it - reordered ifname/ifaddr/mapaddr (was previously mapaddr/ifaddr/ifname) as mapaddr is a sort of specialization of ifaddr and so makes more sense to come after it (particularly because it now references ifaddr in its help message). - removed peer-stats option (since we always require it for relays and never use it for clients) - removed router profiles filename option (this doesn't need to be configurable) - removed defunct `service-node-seed` option - Change default logging output file to "" (which means stdout), and also made "-" work for stdout. * Router hive compilation fixes * Comments for SNApp SRV settings in ini file * Add extra blank line after section comments * Better deprecated option handling Allow {client,relay}-only options in {relay,client} configs to be specified as implicitly deprecated options: they warn, and don't set anything. Add an explicit `Deprecated` tag and move deprecated option handling into definition.cpp. * Move backwards compat options into section definitions Keep the "addBackwardsCompatibleConfigOptions" only for options in sections that no longer exist. * Fix INI parsing issues & C++17-ify - don't allow inline comments because it seems they aren't allowed in ini formats in general, and is going to cause problems if there is a comment character in a value (e.g. an exit auth string). Additionally it was breaking on a line such as: # some comment; see? because it was treating only `; see?` as the comment and then producing an error message about the rest of the line being invalid. - make section parsing stricter: the `[` and `]` have to be at the beginning at end of the line now (after stripping whitespace). - Move whitespace stripping to the top since everything in here does it. - chop off string_view suffix/prefix rather than maintaining position values - fix potential infinite loop/segfault when given a line such as `]foo[` * Make config parsing failure fatal Load() LogError's and returns false on failure, so we weren't aborting on config file errors. * Formatting: allow `{}` for empty functions/structs Instead of using two lines when empty: { } * Make default dns bind 127.0.0.1 on non-Linux * Don't show empty section; fix tests We can conceivably have sections that only make sense for clients or relays, and so want to completely omit that section if we have no options for the type of config being generated. Also fixes missing empty lines between tests. Co-authored-by: Thomas Winget <tewinget@gmail.com>
2020-10-07 22:22:58 +00:00
{}
llarp_time_t
ILinkLayer::Now() const
{
return m_Router->loop()->time_now();
}
bool
ILinkLayer::HasSessionTo(const RouterID& id)
{
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
Lock_t l(m_AuthedLinksMutex);
return m_AuthedLinks.find(id) != m_AuthedLinks.end();
}
std::shared_ptr<ILinkSession>
ILinkLayer::FindSessionByPubkey(RouterID id)
{
Lock_t l(m_AuthedLinksMutex);
auto itr = m_AuthedLinks.find(id);
if (itr == m_AuthedLinks.end())
return nullptr;
return itr->second;
}
void
ILinkLayer::ForEachSession(std::function<void(const ILinkSession*)> visit, bool randomize) const
{
std::vector<std::shared_ptr<ILinkSession>> sessions;
{
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
Lock_t l(m_AuthedLinksMutex);
if (m_AuthedLinks.size() == 0)
2019-07-03 12:42:11 +00:00
return;
const size_t sz = randint() % m_AuthedLinks.size();
auto itr = m_AuthedLinks.begin();
auto begin = itr;
if (randomize)
{
2019-07-03 12:42:11 +00:00
std::advance(itr, sz);
begin = itr;
}
while (itr != m_AuthedLinks.end())
2019-07-03 12:42:11 +00:00
{
sessions.emplace_back(itr->second);
++itr;
}
if (randomize)
2019-07-03 12:42:11 +00:00
{
itr = m_AuthedLinks.begin();
while (itr != begin)
2019-07-03 12:42:11 +00:00
{
sessions.emplace_back(itr->second);
++itr;
}
}
}
for (const auto& session : sessions)
2019-07-03 12:42:11 +00:00
visit(session.get());
}
bool
ILinkLayer::VisitSessionByPubkey(const RouterID& pk, std::function<bool(ILinkSession*)> visit)
{
std::shared_ptr<ILinkSession> session;
{
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
Lock_t l(m_AuthedLinksMutex);
2019-07-03 12:42:11 +00:00
auto itr = m_AuthedLinks.find(pk);
if (itr == m_AuthedLinks.end())
2019-07-03 12:42:11 +00:00
return false;
session = itr->second;
}
2019-07-03 12:42:11 +00:00
return visit(session.get());
}
void
ILinkLayer::ForEachSession(std::function<void(ILinkSession*)> visit)
{
std::vector<std::shared_ptr<ILinkSession>> sessions;
{
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
Lock_t l(m_AuthedLinksMutex);
2019-07-03 12:42:11 +00:00
auto itr = m_AuthedLinks.begin();
while (itr != m_AuthedLinks.end())
2019-07-03 12:42:11 +00:00
{
sessions.emplace_back(itr->second);
++itr;
}
}
for (const auto& s : sessions)
2019-07-03 12:42:11 +00:00
visit(s.get());
}
bool
ILinkLayer::Configure(AbstractRouter* router, const std::string& ifname, int af, uint16_t port)
{
m_Router = router;
m_udp = m_Router->loop()->make_udp(
Replace libuv with uvw & related refactoring - removes all the llarp_ev_* functions, replacing with methods/classes/functions in the llarp namespace. - banish ev/ev.h to the void - Passes various things by const lvalue ref, especially shared_ptr's that don't need to be copied (to avoid an atomic refcount increment/decrement). - Add a llarp::UDPHandle abstract class for UDP handling - Removes the UDP tick handler; code that needs tick can just do a separate handler on the event loop outside the UDP socket. - Adds an "OwnedBuffer" which owns its own memory but is implicitly convertible to a llarp_buffer_t. This is mostly needed to take over ownership of buffers from uvw without copying them as, currently, uvw does its own allocation (pending some open upstream issues/PRs). - Logic: - add `make_caller`/`call_forever`/`call_every` utility functions to abstract Call wrapping and dependent timed tasks. - Add inLogicThread() so that code can tell its inside the logic thread (typically for debugging assertions). - get rid of janky integer returns and dealing with cancellations on call_later: the other methods added here and the event loop code remove the need for them. - Event loop: - redo everything with uvw instead of libuv - rename EventLoopWakeup::Wakeup to EventLoopWakeup::Trigger to better reflect what it does. - add EventLoopRepeater for repeated events, and replace the code that reschedules itself every time it is called with a repeater. - Split up `EventLoop::run()` into a non-virtual base method and abstract `run_loop()` methods; the base method does a couple extra setup/teardown things that don't need to be in the derived class. - udp_listen is replaced with ev->udp(...) which returns a new UDPHandle object rather that needing gross C-style-but-not-actually-C-compatible structs. - Remove unused register_poll_fd_(un)readable - Use shared_ptr for EventLoopWakeup rather than returning a raw pointer; uvw lets us not have to worry about having the event loop class maintain ownership of it. - Add factory EventLoop::create() function to create a default (uvw-based) event loop (previously this was one of the llarp_ev_blahblah unnamespaced functions). - ev_libuv: this is mostly rewritten; all of the glue code/structs, in particular, are gone as they are no longer needed with uvw. - DNS: - Rename DnsHandler to DnsInterceptor to better describe what it does (this is the code that intercepts all DNS to the tun IP range for Android). - endpoint: - remove unused "isolated network" code - remove distinct (but actually always the same) variables for router/endpoint logic objects - llarp_buffer_t - make constructors type-safe against being called with points to non-size-1 values - tun packet reading: - read all available packets off the device/file descriptor; previously we were reading one packet at a time then returning to the event loop to poll again. - ReadNextPacket() now returns a 0-size packet if the read would block (so that we can implement the previous point). - ReadNextPacket() now throws on I/O error - Miscellaneous code cleanups/simplifications
2021-03-02 02:06:20 +00:00
[this]([[maybe_unused]] UDPHandle& udp, const SockAddr& from, llarp_buffer_t buf) {
ILinkSession::Packet_t pkt;
pkt.resize(buf.sz);
std::copy_n(buf.base, buf.sz, pkt.data());
RecvFrom(from, std::move(pkt));
});
if (ifname == "*")
{
if (!AllInterfaces(af, m_ourAddr))
return false;
}
2020-05-04 18:39:14 +00:00
else
{
if (const auto maybe = GetInterfaceAddr(ifname, af))
2020-05-04 18:39:14 +00:00
{
m_ourAddr = *maybe;
2020-05-04 18:39:14 +00:00
}
else
{
2020-05-06 20:38:44 +00:00
try
{
m_ourAddr = SockAddr{ifname + ":0"};
2020-05-06 20:38:44 +00:00
}
catch (const std::exception& e)
{
LogError(stringify("Could not use ifname ", ifname, " to configure ILinkLayer"));
throw e;
2020-05-06 20:38:44 +00:00
}
2020-05-04 18:39:14 +00:00
}
}
2020-05-06 20:38:44 +00:00
m_ourAddr.setPort(port);
Replace libuv with uvw & related refactoring - removes all the llarp_ev_* functions, replacing with methods/classes/functions in the llarp namespace. - banish ev/ev.h to the void - Passes various things by const lvalue ref, especially shared_ptr's that don't need to be copied (to avoid an atomic refcount increment/decrement). - Add a llarp::UDPHandle abstract class for UDP handling - Removes the UDP tick handler; code that needs tick can just do a separate handler on the event loop outside the UDP socket. - Adds an "OwnedBuffer" which owns its own memory but is implicitly convertible to a llarp_buffer_t. This is mostly needed to take over ownership of buffers from uvw without copying them as, currently, uvw does its own allocation (pending some open upstream issues/PRs). - Logic: - add `make_caller`/`call_forever`/`call_every` utility functions to abstract Call wrapping and dependent timed tasks. - Add inLogicThread() so that code can tell its inside the logic thread (typically for debugging assertions). - get rid of janky integer returns and dealing with cancellations on call_later: the other methods added here and the event loop code remove the need for them. - Event loop: - redo everything with uvw instead of libuv - rename EventLoopWakeup::Wakeup to EventLoopWakeup::Trigger to better reflect what it does. - add EventLoopRepeater for repeated events, and replace the code that reschedules itself every time it is called with a repeater. - Split up `EventLoop::run()` into a non-virtual base method and abstract `run_loop()` methods; the base method does a couple extra setup/teardown things that don't need to be in the derived class. - udp_listen is replaced with ev->udp(...) which returns a new UDPHandle object rather that needing gross C-style-but-not-actually-C-compatible structs. - Remove unused register_poll_fd_(un)readable - Use shared_ptr for EventLoopWakeup rather than returning a raw pointer; uvw lets us not have to worry about having the event loop class maintain ownership of it. - Add factory EventLoop::create() function to create a default (uvw-based) event loop (previously this was one of the llarp_ev_blahblah unnamespaced functions). - ev_libuv: this is mostly rewritten; all of the glue code/structs, in particular, are gone as they are no longer needed with uvw. - DNS: - Rename DnsHandler to DnsInterceptor to better describe what it does (this is the code that intercepts all DNS to the tun IP range for Android). - endpoint: - remove unused "isolated network" code - remove distinct (but actually always the same) variables for router/endpoint logic objects - llarp_buffer_t - make constructors type-safe against being called with points to non-size-1 values - tun packet reading: - read all available packets off the device/file descriptor; previously we were reading one packet at a time then returning to the event loop to poll again. - ReadNextPacket() now returns a 0-size packet if the read would block (so that we can implement the previous point). - ReadNextPacket() now throws on I/O error - Miscellaneous code cleanups/simplifications
2021-03-02 02:06:20 +00:00
if (not m_udp->listen(m_ourAddr))
return false;
return true;
}
void
ILinkLayer::Pump()
{
std::unordered_set<RouterID> closedSessions;
std::vector<std::shared_ptr<ILinkSession>> closedPending;
auto _now = Now();
{
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
Lock_t l(m_AuthedLinksMutex);
2018-09-07 20:36:06 +00:00
auto itr = m_AuthedLinks.begin();
while (itr != m_AuthedLinks.end())
2018-09-07 17:41:49 +00:00
{
if (not itr->second->TimedOut(_now))
2018-09-07 20:36:06 +00:00
{
itr->second->Pump();
++itr;
}
else
2018-11-19 21:55:41 +00:00
{
llarp::LogInfo("session to ", RouterID(itr->second->GetPubKey()), " timed out");
2019-05-25 14:54:30 +00:00
itr->second->Close();
2019-11-28 20:41:02 +00:00
closedSessions.emplace(itr->first);
2018-09-07 20:36:06 +00:00
itr = m_AuthedLinks.erase(itr);
2018-11-19 21:55:41 +00:00
}
2018-09-07 17:41:49 +00:00
}
2018-09-07 20:36:06 +00:00
}
{
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
Lock_t l(m_PendingMutex);
2018-09-07 20:36:06 +00:00
auto itr = m_Pending.begin();
while (itr != m_Pending.end())
{
if (not itr->second->TimedOut(_now))
2018-09-07 20:36:06 +00:00
{
2019-01-07 12:47:57 +00:00
itr->second->Pump();
2018-09-07 20:36:06 +00:00
++itr;
}
else
2019-03-11 13:01:43 +00:00
{
LogInfo("pending session at ", itr->first, " timed out");
2019-08-29 11:45:58 +00:00
// defer call so we can acquire mutexes later
2019-11-29 01:02:20 +00:00
closedPending.emplace_back(std::move(itr->second));
2018-09-07 20:36:06 +00:00
itr = m_Pending.erase(itr);
2019-03-11 13:01:43 +00:00
}
2018-09-06 13:16:24 +00:00
}
}
2019-11-28 20:41:02 +00:00
{
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
Lock_t l(m_AuthedLinksMutex);
for (const auto& r : closedSessions)
2019-11-28 20:41:02 +00:00
{
if (m_AuthedLinks.count(r) == 0)
2019-11-28 20:41:02 +00:00
{
SessionClosed(r);
}
}
}
for (const auto& pending : closedPending)
{
if (pending->IsInbound())
2020-01-21 17:31:48 +00:00
continue;
2019-11-29 01:02:20 +00:00
HandleTimeout(pending.get());
}
}
2019-01-07 12:47:57 +00:00
bool
ILinkLayer::MapAddr(const RouterID& pk, ILinkSession* s)
2018-09-07 17:41:49 +00:00
{
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
Lock_t l_authed(m_AuthedLinksMutex);
Lock_t l_pending(m_PendingMutex);
const auto addr = s->GetRemoteEndpoint();
auto itr = m_Pending.find(addr);
if (itr != m_Pending.end())
2018-09-07 17:41:49 +00:00
{
if (m_AuthedLinks.count(pk))
2019-01-10 12:30:21 +00:00
{
2019-08-29 11:45:58 +00:00
LogWarn("too many session for ", pk);
2019-04-02 09:03:53 +00:00
s->Close();
2019-01-10 12:30:21 +00:00
return false;
}
2019-04-02 09:03:53 +00:00
m_AuthedLinks.emplace(pk, itr->second);
2019-01-04 12:43:53 +00:00
itr = m_Pending.erase(itr);
m_Router->TriggerPump();
2019-01-10 12:30:21 +00:00
return true;
2019-01-07 12:47:57 +00:00
}
2019-01-10 12:30:21 +00:00
return false;
2018-09-07 17:41:49 +00:00
}
bool
ILinkLayer::PickAddress(const RouterContact& rc, llarp::AddressInfo& picked) const
{
std::string OurDialect = Name();
for (const auto& addr : rc.addrs)
{
if (addr.dialect == OurDialect)
{
picked = addr;
return true;
}
}
return false;
}
util::StatusObject
ILinkLayer::ExtractStatus() const
{
std::vector<util::StatusObject> pending, established;
2019-02-18 23:58:12 +00:00
{
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
Lock_t l(m_PendingMutex);
std::transform(
m_Pending.cbegin(),
m_Pending.cend(),
std::back_inserter(pending),
[](const auto& item) -> util::StatusObject { return item.second->ExtractStatus(); });
}
{
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
Lock_t l(m_AuthedLinksMutex);
std::transform(
m_AuthedLinks.cbegin(),
m_AuthedLinks.cend(),
std::back_inserter(established),
[](const auto& item) -> util::StatusObject { return item.second->ExtractStatus(); });
}
2019-02-18 23:58:12 +00:00
2021-03-05 17:31:52 +00:00
return {
{"name", Name()},
{"rank", uint64_t(Rank())},
{"addr", m_ourAddr.toString()},
{"sessions", util::StatusObject{{"pending", pending}, {"established", established}}}};
}
bool
2018-12-19 17:48:29 +00:00
ILinkLayer::TryEstablishTo(RouterContact rc)
{
2019-05-08 12:17:48 +00:00
{
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
Lock_t l(m_AuthedLinksMutex);
if (m_AuthedLinks.count(rc.pubkey))
2020-03-11 20:55:12 +00:00
{
LogWarn("Too many links to ", RouterID{rc.pubkey}, ", not establishing another one");
2019-05-08 12:17:48 +00:00
return false;
2020-03-11 20:55:12 +00:00
}
2019-05-08 12:17:48 +00:00
}
llarp::AddressInfo to;
if (not PickAddress(rc, to))
{
LogWarn("router ", RouterID{rc.pubkey}, " has no acceptable inbound addresses");
return false;
}
const SockAddr address{to};
2019-05-08 12:17:48 +00:00
{
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
Lock_t l(m_PendingMutex);
if (m_Pending.count(address))
2020-03-11 20:55:12 +00:00
{
LogWarn(
"Too many pending connections to ",
2020-05-06 20:38:44 +00:00
address,
" while establishing to ",
RouterID{rc.pubkey},
", not establishing another");
2019-05-08 12:17:48 +00:00
return false;
2020-03-11 20:55:12 +00:00
}
2019-05-08 12:17:48 +00:00
}
std::shared_ptr<ILinkSession> s = NewOutboundSession(rc, to);
if (BeforeConnect)
{
BeforeConnect(std::move(rc));
}
if (not PutSession(s))
2019-01-07 12:47:57 +00:00
{
return false;
2019-01-07 12:47:57 +00:00
}
s->Start();
return true;
}
bool
2021-03-02 22:27:35 +00:00
ILinkLayer::Start()
{
Replace libuv with uvw & related refactoring - removes all the llarp_ev_* functions, replacing with methods/classes/functions in the llarp namespace. - banish ev/ev.h to the void - Passes various things by const lvalue ref, especially shared_ptr's that don't need to be copied (to avoid an atomic refcount increment/decrement). - Add a llarp::UDPHandle abstract class for UDP handling - Removes the UDP tick handler; code that needs tick can just do a separate handler on the event loop outside the UDP socket. - Adds an "OwnedBuffer" which owns its own memory but is implicitly convertible to a llarp_buffer_t. This is mostly needed to take over ownership of buffers from uvw without copying them as, currently, uvw does its own allocation (pending some open upstream issues/PRs). - Logic: - add `make_caller`/`call_forever`/`call_every` utility functions to abstract Call wrapping and dependent timed tasks. - Add inLogicThread() so that code can tell its inside the logic thread (typically for debugging assertions). - get rid of janky integer returns and dealing with cancellations on call_later: the other methods added here and the event loop code remove the need for them. - Event loop: - redo everything with uvw instead of libuv - rename EventLoopWakeup::Wakeup to EventLoopWakeup::Trigger to better reflect what it does. - add EventLoopRepeater for repeated events, and replace the code that reschedules itself every time it is called with a repeater. - Split up `EventLoop::run()` into a non-virtual base method and abstract `run_loop()` methods; the base method does a couple extra setup/teardown things that don't need to be in the derived class. - udp_listen is replaced with ev->udp(...) which returns a new UDPHandle object rather that needing gross C-style-but-not-actually-C-compatible structs. - Remove unused register_poll_fd_(un)readable - Use shared_ptr for EventLoopWakeup rather than returning a raw pointer; uvw lets us not have to worry about having the event loop class maintain ownership of it. - Add factory EventLoop::create() function to create a default (uvw-based) event loop (previously this was one of the llarp_ev_blahblah unnamespaced functions). - ev_libuv: this is mostly rewritten; all of the glue code/structs, in particular, are gone as they are no longer needed with uvw. - DNS: - Rename DnsHandler to DnsInterceptor to better describe what it does (this is the code that intercepts all DNS to the tun IP range for Android). - endpoint: - remove unused "isolated network" code - remove distinct (but actually always the same) variables for router/endpoint logic objects - llarp_buffer_t - make constructors type-safe against being called with points to non-size-1 values - tun packet reading: - read all available packets off the device/file descriptor; previously we were reading one packet at a time then returning to the event loop to poll again. - ReadNextPacket() now returns a 0-size packet if the read would block (so that we can implement the previous point). - ReadNextPacket() now throws on I/O error - Miscellaneous code cleanups/simplifications
2021-03-02 02:06:20 +00:00
// Tie the lifetime of this repeater to this arbitrary shared_ptr:
m_repeater_keepalive = std::make_shared<int>(0);
m_Router->loop()->call_every(
LINK_LAYER_TICK_INTERVAL, m_repeater_keepalive, [this] { Tick(Now()); });
return true;
}
void
Replace libuv with uvw & related refactoring - removes all the llarp_ev_* functions, replacing with methods/classes/functions in the llarp namespace. - banish ev/ev.h to the void - Passes various things by const lvalue ref, especially shared_ptr's that don't need to be copied (to avoid an atomic refcount increment/decrement). - Add a llarp::UDPHandle abstract class for UDP handling - Removes the UDP tick handler; code that needs tick can just do a separate handler on the event loop outside the UDP socket. - Adds an "OwnedBuffer" which owns its own memory but is implicitly convertible to a llarp_buffer_t. This is mostly needed to take over ownership of buffers from uvw without copying them as, currently, uvw does its own allocation (pending some open upstream issues/PRs). - Logic: - add `make_caller`/`call_forever`/`call_every` utility functions to abstract Call wrapping and dependent timed tasks. - Add inLogicThread() so that code can tell its inside the logic thread (typically for debugging assertions). - get rid of janky integer returns and dealing with cancellations on call_later: the other methods added here and the event loop code remove the need for them. - Event loop: - redo everything with uvw instead of libuv - rename EventLoopWakeup::Wakeup to EventLoopWakeup::Trigger to better reflect what it does. - add EventLoopRepeater for repeated events, and replace the code that reschedules itself every time it is called with a repeater. - Split up `EventLoop::run()` into a non-virtual base method and abstract `run_loop()` methods; the base method does a couple extra setup/teardown things that don't need to be in the derived class. - udp_listen is replaced with ev->udp(...) which returns a new UDPHandle object rather that needing gross C-style-but-not-actually-C-compatible structs. - Remove unused register_poll_fd_(un)readable - Use shared_ptr for EventLoopWakeup rather than returning a raw pointer; uvw lets us not have to worry about having the event loop class maintain ownership of it. - Add factory EventLoop::create() function to create a default (uvw-based) event loop (previously this was one of the llarp_ev_blahblah unnamespaced functions). - ev_libuv: this is mostly rewritten; all of the glue code/structs, in particular, are gone as they are no longer needed with uvw. - DNS: - Rename DnsHandler to DnsInterceptor to better describe what it does (this is the code that intercepts all DNS to the tun IP range for Android). - endpoint: - remove unused "isolated network" code - remove distinct (but actually always the same) variables for router/endpoint logic objects - llarp_buffer_t - make constructors type-safe against being called with points to non-size-1 values - tun packet reading: - read all available packets off the device/file descriptor; previously we were reading one packet at a time then returning to the event loop to poll again. - ReadNextPacket() now returns a 0-size packet if the read would block (so that we can implement the previous point). - ReadNextPacket() now throws on I/O error - Miscellaneous code cleanups/simplifications
2021-03-02 02:06:20 +00:00
ILinkLayer::Tick(const llarp_time_t now)
{
{
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
Lock_t l(m_AuthedLinksMutex);
2021-03-02 02:07:18 +00:00
for (const auto& [routerid, link] : m_AuthedLinks)
link->Tick(now);
2019-03-07 15:17:29 +00:00
}
2019-03-07 15:17:29 +00:00
{
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
Lock_t l(m_PendingMutex);
2021-03-02 02:07:18 +00:00
for (const auto& [addr, link] : m_Pending)
link->Tick(now);
}
2021-03-02 02:07:18 +00:00
2019-12-05 16:31:58 +00:00
{
// decay recently closed list
auto itr = m_RecentlyClosed.begin();
while (itr != m_RecentlyClosed.end())
2019-12-05 16:31:58 +00:00
{
if (itr->second >= now)
2019-12-05 16:31:58 +00:00
itr = m_RecentlyClosed.erase(itr);
else
++itr;
}
}
}
void
ILinkLayer::Stop()
{
Replace libuv with uvw & related refactoring - removes all the llarp_ev_* functions, replacing with methods/classes/functions in the llarp namespace. - banish ev/ev.h to the void - Passes various things by const lvalue ref, especially shared_ptr's that don't need to be copied (to avoid an atomic refcount increment/decrement). - Add a llarp::UDPHandle abstract class for UDP handling - Removes the UDP tick handler; code that needs tick can just do a separate handler on the event loop outside the UDP socket. - Adds an "OwnedBuffer" which owns its own memory but is implicitly convertible to a llarp_buffer_t. This is mostly needed to take over ownership of buffers from uvw without copying them as, currently, uvw does its own allocation (pending some open upstream issues/PRs). - Logic: - add `make_caller`/`call_forever`/`call_every` utility functions to abstract Call wrapping and dependent timed tasks. - Add inLogicThread() so that code can tell its inside the logic thread (typically for debugging assertions). - get rid of janky integer returns and dealing with cancellations on call_later: the other methods added here and the event loop code remove the need for them. - Event loop: - redo everything with uvw instead of libuv - rename EventLoopWakeup::Wakeup to EventLoopWakeup::Trigger to better reflect what it does. - add EventLoopRepeater for repeated events, and replace the code that reschedules itself every time it is called with a repeater. - Split up `EventLoop::run()` into a non-virtual base method and abstract `run_loop()` methods; the base method does a couple extra setup/teardown things that don't need to be in the derived class. - udp_listen is replaced with ev->udp(...) which returns a new UDPHandle object rather that needing gross C-style-but-not-actually-C-compatible structs. - Remove unused register_poll_fd_(un)readable - Use shared_ptr for EventLoopWakeup rather than returning a raw pointer; uvw lets us not have to worry about having the event loop class maintain ownership of it. - Add factory EventLoop::create() function to create a default (uvw-based) event loop (previously this was one of the llarp_ev_blahblah unnamespaced functions). - ev_libuv: this is mostly rewritten; all of the glue code/structs, in particular, are gone as they are no longer needed with uvw. - DNS: - Rename DnsHandler to DnsInterceptor to better describe what it does (this is the code that intercepts all DNS to the tun IP range for Android). - endpoint: - remove unused "isolated network" code - remove distinct (but actually always the same) variables for router/endpoint logic objects - llarp_buffer_t - make constructors type-safe against being called with points to non-size-1 values - tun packet reading: - read all available packets off the device/file descriptor; previously we were reading one packet at a time then returning to the event loop to poll again. - ReadNextPacket() now returns a 0-size packet if the read would block (so that we can implement the previous point). - ReadNextPacket() now throws on I/O error - Miscellaneous code cleanups/simplifications
2021-03-02 02:06:20 +00:00
m_repeater_keepalive.reset(); // make the repeater kill itself
{
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
Lock_t l(m_AuthedLinksMutex);
2021-03-02 02:07:18 +00:00
for (const auto& [router, link] : m_AuthedLinks)
link->Close();
}
{
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
Lock_t l(m_PendingMutex);
2021-03-02 02:07:18 +00:00
for (const auto& [addr, link] : m_Pending)
link->Close();
}
}
void
ILinkLayer::CloseSessionTo(const RouterID& remote)
{
2020-02-24 19:40:45 +00:00
static constexpr auto CloseGraceWindow = 500ms;
const auto now = Now();
2018-09-07 20:36:06 +00:00
{
Lock_t l(m_AuthedLinksMutex);
RouterID r = remote;
llarp::LogInfo("Closing all to ", r);
for (auto [itr, end] = m_AuthedLinks.equal_range(r); itr != end;)
{
itr->second->Close();
m_RecentlyClosed.emplace(itr->second->GetRemoteEndpoint(), now + CloseGraceWindow);
itr = m_AuthedLinks.erase(itr);
}
2018-09-07 20:36:06 +00:00
}
SessionClosed(remote);
}
void
ILinkLayer::KeepAliveSessionTo(const RouterID& remote)
{
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
Lock_t l(m_AuthedLinksMutex);
2021-03-02 02:07:18 +00:00
for (auto [itr, end] = m_AuthedLinks.equal_range(remote); itr != end; ++itr)
2018-09-07 20:36:06 +00:00
{
if (itr->second->ShouldPing())
2020-03-11 20:55:12 +00:00
{
LogDebug("keepalive to ", remote);
2019-03-18 12:25:32 +00:00
itr->second->SendKeepAlive();
2020-03-11 20:55:12 +00:00
}
2018-09-07 20:36:06 +00:00
}
}
Replace libuv with uvw & related refactoring - removes all the llarp_ev_* functions, replacing with methods/classes/functions in the llarp namespace. - banish ev/ev.h to the void - Passes various things by const lvalue ref, especially shared_ptr's that don't need to be copied (to avoid an atomic refcount increment/decrement). - Add a llarp::UDPHandle abstract class for UDP handling - Removes the UDP tick handler; code that needs tick can just do a separate handler on the event loop outside the UDP socket. - Adds an "OwnedBuffer" which owns its own memory but is implicitly convertible to a llarp_buffer_t. This is mostly needed to take over ownership of buffers from uvw without copying them as, currently, uvw does its own allocation (pending some open upstream issues/PRs). - Logic: - add `make_caller`/`call_forever`/`call_every` utility functions to abstract Call wrapping and dependent timed tasks. - Add inLogicThread() so that code can tell its inside the logic thread (typically for debugging assertions). - get rid of janky integer returns and dealing with cancellations on call_later: the other methods added here and the event loop code remove the need for them. - Event loop: - redo everything with uvw instead of libuv - rename EventLoopWakeup::Wakeup to EventLoopWakeup::Trigger to better reflect what it does. - add EventLoopRepeater for repeated events, and replace the code that reschedules itself every time it is called with a repeater. - Split up `EventLoop::run()` into a non-virtual base method and abstract `run_loop()` methods; the base method does a couple extra setup/teardown things that don't need to be in the derived class. - udp_listen is replaced with ev->udp(...) which returns a new UDPHandle object rather that needing gross C-style-but-not-actually-C-compatible structs. - Remove unused register_poll_fd_(un)readable - Use shared_ptr for EventLoopWakeup rather than returning a raw pointer; uvw lets us not have to worry about having the event loop class maintain ownership of it. - Add factory EventLoop::create() function to create a default (uvw-based) event loop (previously this was one of the llarp_ev_blahblah unnamespaced functions). - ev_libuv: this is mostly rewritten; all of the glue code/structs, in particular, are gone as they are no longer needed with uvw. - DNS: - Rename DnsHandler to DnsInterceptor to better describe what it does (this is the code that intercepts all DNS to the tun IP range for Android). - endpoint: - remove unused "isolated network" code - remove distinct (but actually always the same) variables for router/endpoint logic objects - llarp_buffer_t - make constructors type-safe against being called with points to non-size-1 values - tun packet reading: - read all available packets off the device/file descriptor; previously we were reading one packet at a time then returning to the event loop to poll again. - ReadNextPacket() now returns a 0-size packet if the read would block (so that we can implement the previous point). - ReadNextPacket() now throws on I/O error - Miscellaneous code cleanups/simplifications
2021-03-02 02:06:20 +00:00
void
ILinkLayer::SendTo_LL(const SockAddr& to, const llarp_buffer_t& pkt)
{
m_udp->send(to, pkt);
}
bool
ILinkLayer::SendTo(
const RouterID& remote, const llarp_buffer_t& buf, ILinkSession::CompletionHandler completed)
{
std::shared_ptr<ILinkSession> s;
2018-09-07 20:36:06 +00:00
{
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
Lock_t l(m_AuthedLinksMutex);
// pick lowest backlog session
size_t min = std::numeric_limits<size_t>::max();
2021-03-02 02:07:18 +00:00
for (auto [itr, end] = m_AuthedLinks.equal_range(remote); itr != end; ++itr)
{
2021-03-02 02:07:18 +00:00
if (const auto backlog = itr->second->SendQueueBacklog(); backlog < min)
{
s = itr->second;
min = backlog;
}
}
2018-09-07 20:36:06 +00:00
}
ILinkSession::Message_t pkt(buf.sz);
std::copy_n(buf.base, buf.sz, pkt.begin());
return s && s->SendMessageBuffer(std::move(pkt), completed);
}
bool
ILinkLayer::GetOurAddressInfo(llarp::AddressInfo& addr) const
{
addr.fromSockAddr(m_ourAddr);
addr.dialect = Name();
addr.pubkey = TransportPubKey();
addr.rank = Rank();
return true;
}
const byte_t*
ILinkLayer::TransportPubKey() const
{
2018-09-04 12:55:20 +00:00
return llarp::seckey_topublic(TransportSecretKey());
}
const SecretKey&
2018-09-04 12:55:20 +00:00
ILinkLayer::TransportSecretKey() const
{
return m_SecretKey;
}
2019-01-07 12:47:57 +00:00
bool
ILinkLayer::PutSession(const std::shared_ptr<ILinkSession>& s)
2018-09-07 17:41:49 +00:00
{
De-abseil, part 2: mutex, locks, (most) time - util::Mutex is now a std::shared_timed_mutex, which is capable of exclusive and shared locks. - util::Lock is still present as a std::lock_guard<util::Mutex>. - the locking annotations are preserved, but updated to the latest supported by clang rather than using abseil's older/deprecated ones. - ACQUIRE_LOCK macro is gone since we don't pass mutexes by pointer into locks anymore (WTF abseil). - ReleasableLock is gone. Instead there are now some llarp::util helper methods to obtain unique and/or shared locks: - `auto lock = util::unique_lock(mutex);` gets an RAII-but-also unlockable object (std::unique_lock<T>, with T inferred from `mutex`). - `auto lock = util::shared_lock(mutex);` gets an RAII shared (i.e. "reader") lock of the mutex. - `auto lock = util::unique_locks(mutex1, mutex2, mutex3);` can be used to atomically lock multiple mutexes at once (returning a tuple of the locks). This are templated on the mutex which makes them a bit more flexible than using a concrete type: they can be used for any type of lockable mutex, not only util::Mutex. (Some of the code here uses them for getting locks around a std::mutex). Until C++17, using the RAII types is painfully verbose: ```C++ // pre-C++17 - needing to figure out the mutex type here is annoying: std::unique_lock<util::Mutex> lock(mutex); // pre-C++17 and even more verbose (but at least the type isn't needed): std::unique_lock<decltype(mutex)> lock(mutex); // our compromise: auto lock = util::unique_lock(mutex); // C++17: std::unique_lock lock(mutex); ``` All of these functions will also warn (under gcc or clang) if you discard the return value. You can also do fancy things like `auto l = util::unique_lock(mutex, std::adopt_lock)` (which lets a lock take over an already-locked mutex). - metrics code is gone, which also removes a big pile of code that was only used by metrics: - llarp::util::Scheduler - llarp::thread::TimerQueue - llarp::util::Stopwatch
2020-02-21 17:21:11 +00:00
Lock_t lock(m_PendingMutex);
const auto address = s->GetRemoteEndpoint();
if (m_Pending.count(address))
2019-01-07 12:47:57 +00:00
return false;
2020-05-06 20:38:44 +00:00
m_Pending.emplace(address, s);
2019-01-07 12:47:57 +00:00
return true;
2018-09-07 17:41:49 +00:00
}
std::optional<int>
ILinkLayer::GetUDPFD() const
{
return m_udp->file_descriptor();
}
} // namespace llarp