You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
lnbook/ch01.asciidoc

173 lines
18 KiB
Plaintext

[role="pagenumrestart"]
[[ch01_intro_what_is_the_lightning_network]]
== Introduction
Welcome to Mastering the Lightning Network (LN)! This second layer technology is changing the way people exchange value online and it's one of the most exciting advancements to happen to the Bitcoin network over the past few years. Right now, LN is in its infancy. In concept it's about 5 years old, in implementation about 3 years old. We're only beginning to see the opportunities LN provides including improved privacy, speed, and scale. With core knowledge of LN, you can help shape the future of the network while building opportunities for yourself as well. Some basic knowledge about Bitcoin is assumed but can be readily acquired by reading the first two chapters of _Mastering Bitcoin_ which are available for free, online.
While the bulk of this book is written for programmers, the first two chapters are written to be approachable by anyone regardless of technical experience. In order to better understand how the technology actually works, and why people use it, we'll be following a number of users and their stories. In this chapter, you'll meet Alice and walk through her thought process as she selects an LN wallet and prepares to make her first LN transaction, to buy a cup of coffee from Bob's Cafe. But first, we'll introduce some of the key concepts in LN. Let's get started with why the Lightning Network was proposed in the first place.
=== Motivation for the Lightning Network
As Bitcoin grows, and the demand for transactions grows, the number of transactions in each block will increase until eventually hitting the block size limit. When blocks are full, excess transactions are left to wait in a queue and many users increase the fees they're willing to pay in order to buy space for their transaction in the next block. However, simply increasing block size does not solve the problem because it has the undesirable effect of centralizing the network. Because blockchains are gossip protocols, each node is required to know and validate every single transaction that occurs on the network. As such, the greater the block size, the greater the processing and storage requirements for each individual node. The greater the requirements, the fewer the nodes that will ultimately be run. But what if each node wasn't required to know and validate every single transaction? What if there was a way to have scalable off-chain transactions, without losing the security of the Bitcoin network?
In February 2015, Joseph Poon and Thaddeus Dryja proposed a possible solution to the Bitcoin Scalability Problem, with the publication of _"The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments"_ footnote:[Joseph Poon, Thaddeus Dryja - "The Bitcoin Lightning Network:
Scalable Off-Chain Instant Payments" (https://lightning.network/lightning-network-paper.pdf).] In the whitepaper, Poon and Dryja estimate that in order for Bitcoin to reach the 47,000 transactions per second processed at peak by Visa, it would require 8GB blocks. This would make running a node completely untenable for anyone but large scale enterprises and industrial grade operations. The result would be a network in which only a few users can actually validate the state of the ledger, which ultimately breaks the trust model of Bitcoin.
The Lightning Network proposes a new network, a "second layer", where users can transact with each other peer-to-peer, without publishing every transaction to the Bitcoin blockchain.
Users may transact on the Lightning Network as many times with as many users as they want, making use of the Bitcoin blockchain only in order to load bitcoin onto the network initially and to "settle", that is: remove bitcoin from the Lightning Network.
The result is that many more Bitcoin transactions can take place "off-chain", with only the initial loading and final settlement transactions needing to be validated and stored by Bitcoin nodes.
Aside from reducing the burden on nodes, these transactions will be cheaper for users as they do not need to pay blockchain fees, and more private for users as they are not published to all participants of the network.
While the Lightning Network was initially conceived for Bitcoin, it is able to be implemented on any blockchain that meets its technical requirements.
=== Lightning Network Basic Concepts
As we start exploring the Lightning Network, we will encounter some technical terminology that might, at first, be confusing and a bit difficult to understand. While all of these concepts and terms will be explained in detail as we progress through the book, and are defined in the glossary, we need some basic explanations to get started. Here are some of the concepts you will encounter in the first two chapters of this book:
Node:: A computer that participates in a network. An LN node is a computer that participates in the Lightning Network. A Bitcoin node is a computer that participates in the Bitcoin Network. Typically a Lightning Network user will run an LN node and a Bitcoin node.
Blockchain:: A distributed transaction ledger, produced by a network of computers. Bitcoin, for example, is a system that produces a blockchain. The Lightning Network does is not itself a blockchain, nor does it produce a blockchain, it is a network that relies on existing blockchains for its security.
Transaction:: A data structure that records the transfer of control over some funds (eg. some bitcoin). The Lightning Network relies on Bitcoin transactions (or those of another blockchain), to track control of funds.
Payment Channel:: a payment channel is a _financial relationship_ between two nodes on the Lightning Network, typically implemented by multi-signature Bitcoin transactions that share control over bitcoin between the two LN nodes.
On-Chain/Off-Chain:: a payment is "on-chain" if it is recorded as a transaction on the Bitcoin (or other underlying) blockchain. Payments sent via payment channels between LN nodes, and which are not visible in the underlying blockchain, are called "off-chain" payments.
More detailed definitions of these and many other terms can be found in the <<gloassary>>. Throughout this book we will explain what these concepts mean and how these technologies actually work.
=== What is the Lightning Network?
The Lightning Network is a network that operates as "second layer" protocol on top of Bitcoin and other blockchains. The Lightning Network enables fast, secure, private, trustless, and permissionless payments. Here are some of the features of the LN:
* Users of the Lightning Network can route payments to each other for very low cost and in real time.
* Users who transact on the Lightning Network do not need to wait for block confirmations for payments.
* Once a payment on the Lightning Network has completed, usually within a few seconds, it is final and cannot be reversed: like a Bitcoin transaction, a payment on the Lightning Network can only be refunded by the recipient.
* While "on-chain" Bitcoin transactions are broadcast and verified by all nodes in the network, transactions routed on the Lightning Network are transmitted between pairs of nodes and are not visible to everyone, resulting in much greater privacy.
* The Lightning Network uses onion routing, similar to the protocol used by The Onion Router (TOR) privacy network, so that even the nodes involved in routing a transaction are only directly aware of their predecessor and successor en route.
[[user-stories]]
=== Lightning Network Use Cases, Users, and Their Stories
As an electronic cash system, Bitcoin preserves the three most important properties of money (medium of exchange, store of value, and unit of account).
The invention of money (and in particular Bitcoin) was primarily made to facilitate trade and enable the exchange of value between people.
However, without the Lightning Network, it would be infeasible for millions of people to concurrently use Bitcoin as a medium of exchange.
Therefore, in order to fully understand the uses of the Lightning Network, we'll examine it from the perspective of people using it.
In particular, the use cases will come from previous users of Bitcoin as well as people who have not used Bitcoin before.
Each of the people and their stories, as listed here, illustrates one or more specific use cases.
We'll be seeing them throughout this book:
consumer::
Alice is a bitcoin user who wants to make fast, secure, cheap, and private payments for small retail purchases. She buys coffee with bitcoin, using the Lightning Network.
merchant::
Bob owns a coffee shop, "Bob's Cafe". "On-chain" bitcoin payments don't scale for small amounts like a cup of coffee, so he uses the Lightning Network to accept bitcoin payments almost instantaneously and for very low fees.
web designer::
Saanvi is a web designer and developer in Bangalore India. She accepts bitcoin for her work, but would prefer to get paid more frequently and so uses the Lightning Network to get paid for each small milestone she completes. With the Lightning Network, she can do more small jobs for more clients without worrying about fees or delays.
content creator / curator::
John is a 9-year-old boy from New Zealand, who wanted a games console just like his friends. However, his dad told him that in order to buy it, he had to earn the money by himself. Now John is an aspiring artist, so he knows that while he is still improving, he can't charge much for his artwork. After learning about Bitcoin, he managed to set up a website to sell his drawings across the internet. By using the Lightning Network, John was able to charge as little as $1 for one of his drawings, which would normally be considered a micro-payment and, as such, not possible with other payment methods. Furthermore, by using a global currency such as Bitcoin, John was able to sell his artwork to customers all over the world and, in the end, buy the games console he so desperately wanted.
gamer::
Gloria is a teenage gamer from the Philippines. She plays many different computer games, but her favorite ones are those that have an "in-game economy" based on real money. As she plays games, she also earns money by acquiring and selling virtual in-game items. The Lightning Network allows her to transact in small amounts for in-game items as well as earn small amounts for completing quests.
migrant::
Farel is an immigrant who works in the Middle East and sends money home to his family in Indonesia. Remittance companies and banks charge very high fees, and Farel prefers to send smaller amounts more often. Using the Lightning Network, Farel can send bitcoin as often as he wants, with negligible fees.
software service business::
Wei is an entrepreneur who sells information services related to the Lightning Network, as well as Bitcoin and other cryptocurrencies. Wei is monetizing his API endpoints by implementing micro-payments over the Lightning Network. Additionally, Wei has implemented a liquidity provider service that rents inbound channel capacity on the Lightning Network, charging a small bitcoin fee for each rental period.
=== Getting Started
In this section, we will start by choosing software to demonstrate the Lightning Network and learn by example. We will examine the choices of two users who represent a common use-case for the Lightning Network. Alice, a coffee shop customer, will be using a LN wallet on her mobile device to buy coffee from Bob's Cafe. Bob, a merchant, will be using a LN node and wallet to run a point-of-sale system at his cafe so he can accept payment over the Lightning Network.
==== Lightning Nodes
The Lightning Network is accessed via software applications that can speak the Lightning Network protocol. A _Lightning Network Node_ (or simply "node") is a software application that communicates on a peer-to-peer basis with other LN nodes, forming the Lightning _Network_ itself. Nodes also include "wallet" functionality, so they can send and receive payments over the Lightning Network and on the Bitcoin network.
Lightning network nodes also need access to the Bitcoin blockchain (or other blockchains for other cryptocurrencies). Users have the highest degree of control by running their own Bitcoin node and LN node.
However, LN nodes can also use a lightweight Bitcoin client (commonly referred to as Simplified Payment Verification (SPV)) to partially validate the correctness of their blockchain.
==== Lightning Wallets
The term "Lightning Wallet" is somewhat ambiguous, as it can describe a broad variety of components combined with some user interface. The most common components of lightning wallet software include:
* A keystore that securely holds secrets, such as private keys.
* A Lightning Network node that communicates on the Peer-to-Peer network, as described previously.
* A Bitcoin node that stores blockchain data and communicates with other Bitcoin nodes.
* A channel data store with data about channels on the Lightning Network.
* A channel manager that can open and close Lightning Network channels.
* A path-finding system that can identify a path of connected channels from payment source to payment destination.
A lightning wallet may contain all of these functions, acting as a "full" wallet, with no reliance on any third-party services. Or, one or more of these components may rely (partially or entirely) on third-party services that mediate those functions.
A key distinction (pun intended), is whether the keystore function is internal or outsourced. In blockchains, control of keys determines custody of funds, as memorialized by the phrase "your keys, your coins; not your keys, not your coins". Any wallet that outsources management of keys is called a "custodial" wallet, because a third party (custodian) has control of the user's funds, not the user themselves. A "non-custodial" or "self-custody" wallet, by comparison, is one where the keystore is part of the wallet, and keys are controlled directly by the user.
Blockchains, especially open blockchains like Bitcoin, attempt to minimize or eliminate trust in third parties and empower users. This is often called a "trustless" model, though "trust-minimized" is a better term. In such systems, the user trusts the software rules, not third parties. Therefore, the issue of control over keys is a principal consideration when choosing a lightning wallet.
Every other component of a lightning wallet brings similar considerations of trust. If all the components are under the control of the user, then the amount of trust in third parties is minimized, bringing maximum power to the user. Of course, this is a direct tradeoff, as with that power comes the responsibility to manage complex software.
Every user must consider their own technical skills before deciding what type of lightning wallet to use. Those with strong technical skills should use a lightning wallet that puts all of the components under the direct control of the user. Those with less technical skill but a desire to control their funds, should choose a _non-custodial_ lightning wallet, even if some of the components (other than the keystore) rely on some trusted third parties.
Finally, those seeking simplicity and convenience, even at the expense of control and security, may choose a custodial lightning wallet. This is the least challenging option, but it _undermines the trust model of cryptocurrency_ and should, therefore, be considered only as a stepping stone towards more control and self-reliance.
Here are the three broad categories of lightning wallets and the relative degree of control they offer to the user:
|===
| Wallet Type | LN Node | Keystore/Custody | Technical Skill |
| Full Node & Wallet | Full Node | Non-Custodial | High |
| Non-Custodial Wallet | 3rd-party node | Non-Custodial | Medium |
| Custodial Wallet | 3rd-party node | Custodial | Low |
|===
Lightning wallets can be installed on a variety of devices, including laptops, servers, and mobile devices. To run an LN node and a Bitcoin node, you will need to use a server or desktop computer, as mobile devices and laptops are usually not powerful enough in terms of capacity, processing, battery life, and connectivity.
Here are some current examples of LN node and wallet applications for different types of devices:
// TODO: Add a lot more wallet/node examples, confirm the details for correctness
|===
| Application | Device | LN Node | Bitcoin Node | Keystore |
| lnd | Server | Full Node | Bitcoin Core/btcd | User Control |
| c-lightning | Server | Full Node | Bitcoin Core | User Control |
| Eclair Server | Server | Full Node | Bitcoin Core/Electrum | User Control |
| Zap Desktop | Desktop | Full Node | Bitcoin Core/btcd | User Control |
| Eclair Mobile | Mobile | Lightweight | Electrum | User Control |
| Breez Wallet | Mobile | Full Node | Bitcoin Core/btcd | User Control |
| Blue Wallet | Mobile | None | None | Custodial |
|===
=== Alice's First LN Wallet
Alice is a long time Bitcoin user. We first met Alice in Chapter 1 of _"Mastering Bitcoin"_ footnote:["Mastering Bitcoin 2nd Edition, Chapter 1" Andreas M. Antonopoulos (https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch01.asciidoc).], when she bought a cup of coffee from Bob's cafe, using a bitcoin transaction. Now, Alice is eager to learn about and experiment with the Lightning Network. First, she has to select an LN wallet that meets her needs.
Alice does not want to entrust custody of her bitcoin to third parties. She has learned enough about cryptocurrency to know how to use a wallet. She also wants a mobile wallet so that she can use it for small payments on-the-go, so she chooses the _Eclair_ wallet, a popular non-custodial mobile LN wallet.
////
* We start with a mobile wallet like eclair
* Verify the authenticity of the software (e.g. App store / Acinq website / github)
** discuss that a general phising scheme might consist of tricking you to download a similar looking software
[[getting_first_bitcoin]]
==== Getting Your First bitcoin on the Lightning Network
* Trade fiat for bitcoin (as in Mastering Bitcoin)
[[using_own_bitcoin]]
==== Process for people who already own bitcoin ====
* send bitcoin to lightning wallet (1 onchain transaction - soon nodes / wallets may support funding a channel directly without sending bitcoin to the lightning network wallet first)
* find a node to open a channel with (Node explorer / Autopilots / ...)
* open a connection
* open a channel
* wait confirmations for the channel to become operational
////
== Conclusion