
Routing on a Network of Payment channels
In this section we will finally unpack how payment channels can be connected to a network of
other payment channels via a process called routing. Specifically, we will look at the first part of the
routing layer, the Atomic & Trustless Multihop Payment protocol. This is highlighted by a double
outline in the protocol suite diagram:

Figure 1. The Lightning Network Protocol Suite

Routing a payment
In this section we will examine routing from the perspective of Dina, a gamer who receives
donations from her fans while she streams her game sessions.

The innovation of routed payment channels allows Dina to receive tips without maintaining a
separate channel with every one of her fans who want to tip her. As long as there exists a path of
well-funded channels from that viewer to Dina, she will be able to receive payment from that fan.
The nodes along the path from the fan to Dina are intermediaries and called "routing nodes" in the
context of routing a payment.

There is no functional difference between the "routing nodes" and the nodes operated by Dina’s
fans. Any Lightning node is capable of routing payments across its payment channels.

Any one of Dina’s fans in the diagram can pay her by routing via the nodes in between them and Dina
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Importantly, the routing nodes are unable to steal the funds while routing a payment from a fan to
Dina. Furthermore, routing nodes cannot lose money while participating in the routing process.
Routing nodes can charge a routing fee for acting as an intermediary, although they don’t have to
and may choose to route payments for free.

Another important detail is that due to the use of onion routing, intermediary nodes are only
explicitly aware of the one node preceding them and the one node following them in the route.
They will not necessarily know who is the sender and recipient of the payment. This enables fans to
use intermediary nodes to pay Dina, without leaking private information and without risking theft.

This process of connecting a series of payment channels with end-to-end security, and the incentive
structure for nodes to forward payments, is one of the key innovations of the Lightning Network.

In this chapter, we’ll dive into the mechanism of routing in the Lightning Network, detailing the
precise manner in-which payments flow through the network.

First, we will clarify the concept of "routing" and compare it to that of "path finding", as these are
often confused and used interchangeably.

Next, we will construct the fairness protocol: A Conditional Chained End-to-End Secure Payment
(CCESP) used to route payments. To demonstrate how this fairness protocol works, we will be using
a physical equivalent of transferring gold coins between 4 people.

Finally, we will look at the CCESP implementation currently used in the Lightning Network, which
is called a Hash Time-Locked Contract (HTLC).

Routing vs. Path Finding
It’s important to note that we separate the concept of routing from the concept of path finding.
These two concepts are often confused and the term "routing" is often used to describe both
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concepts. Let’s remove the ambiguity, before we proceed any further.

Path Finding, which is covered in [path_finding] is the process of finding and choosing a contiguous
path made of payment channels which connects the sender A to the recipient B. The sender of a
payment does the path finding, by examining the channel graph which they have assembled from
channel announcements gossiped by other nodes.

Routing refers to the series of interactions across the network that allow a payment to flow from A
to B, across the path previously selected by path finding. Routing is the active process of sending a
payment on a path, which involves the cooperation of all the intermediary nodes along that path.

An important rule of thumb is that it’s possible for a path to exist between Alice and Bob, yet there
may not be an active route on which to send the payment.

One example is the scenario where all the nodes connecting Alice and Bob are currently off-line.

In theory, one can examine the channel graph and connect a series of payment channels from Alice
to Bob, hence a path exists. However, as the intermediary nodes are offline, the payment cannot be
sent and so no route exists.

Creating a network of payment channels
Before we dive into the concept of a conditional chained end-to-end secure payment, let’s work
through an example. Let us to return to Alice who, in previous chapters, purchased a coffee from
Bob with whom she has an open channel. Alice now watches a live stream from Dina the gamer,
and wants to send her a tip via the Lightning Network. However, Alice has no direct channel with
Dina. Alice could open a direct channel, however that would require liquidity and on-chain fees
which could be more than the value of the tip itself.

Instead, Alice can use her existing open channels to send a tip to Dina without the need to open a
channel directly with Dina.

This is possible, as long as there exists some path of channels from Alice to Dina with sufficient
capacity to route the tip.

From previous chapters, we know Alice has an open channel with Bob, the coffee shop owner. Bob,
in turn, has an open channel with the software developer Chan who helps him with the point of
sale system he uses in his coffee shop. Chan is also the owner of a large software company which
develops the game that Dina plays, and they already have an open channel which Dina uses to pay
for the game’s license and in-game items.

If we draw out this series of payment channels, it’s possible to manually trace a path from Alice to
Dina that uses Bob and Chan as intermediary routing nodes. Alice can then craft a route from this
outlined path, and use it to send a tip of a few thousand satoshis to Dina, with the payment being
forwarded by Bob and Chan. Essentially, Alice will pay Bob, who will pay Chan, who will pay Dina.
And no direct channel from Alice to Dina is required.

A network of payment channels
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The main challenge is to do this in a way that prevents Bob and Chan from stealing the money that
Alice wants delivered to Dina.

A physical example of "routing"

To understand how the Lightning Network protects the payment while being routed, we can
compare to an example of routing physical payments with gold coins in the real world.

Assume Alice wants to give 10 gold coins to Dina, but does not have direct access to Dina. However,
Alice knows Bob, who knows Chan, who knows Dina and so she decides to ask Bob and Chan for
help.

Alice wants to pay Dina 10 gold coins
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She can pay Bob to pay Chan to pay Dina, but how does she make sure that Bob or Chan don’t run
off with the coins after receiving them? In the physical world contracts could be used for safely
carrying out a series of payments.

Alice could negotiate a contract with Bob which reads:

I (Alice) will give you (Bob) 10 gold coins if you pass them on to Chan

While this contract is nice in the abstract, in the real world, Alice runs the risk that Bob might
breach the contract and hope to not get caught by law enforcement. Even if Bob gets caught by law
enforcement, Alice faces the risk that he might be bankrupt and be unable to return her 10 gold
coins. Assuming these issues are magically solved, it’s still unclear how to leverage such a contract
to achieve our desired outcome: the coins ultimately being delivered to Dina.

We thus improve our contract:

I (Alice) will reimburse you (Bob) with 10 gold coins if you can prove to me (for example via a
receipt) that you already have delivered 10 gold coins to Chan

You might ask yourself why should Bob sign such a contract. He has to pay Chan but ultimately gets
nothing out of the exchange, and he runs the risk that Alice might not reimburse him. Bob could
offer Chan a similar contract to pay Dina, but similarly Chan has no reason to accept it either. Even
putting aside the risk, Bob and Chan must already have 10 gold coins to send, otherwise they
wouldn’t be able to participate in the contract. Thus Bob and Chan face both risk and opportunity
cost for agreeing to this contract, and they would need to be compensated in order for them to
accept it.

Alice can this make this attractive to both Bob and Chan, by offering them fees of 1 gold coin each, if
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they transmit her payment to Dina. The final contract would instead read:

I (Alice) will reimburse you (Bob) with 12 gold coins if you can prove to me (for example via a
receipt) that you already have delivered 11 golden coins to Chan

Alice now promises Bob 12 gold coins. There are 10 to be delivered to Dina and 2 for the fees. She
promises 12 to Bob if he can prove that he has forwarded 11 to Chan. The difference of 1 gold coin
is the fee that Bob will earn for helping out with this particular payment.

Alice pays Bob, Bob pays Chan, Chan pays Dina

As there is still the issue of trust and the risk that either Alice or Bob don’t honor the contract, all
parties decide to use an escrow service. At the start of the exchange, Alice could "lock up" these 12
golden coins in escrow that will only be paid to Bob once he proves that he’s paid 11 golden coins to
Chan.

This escrow service is an "ideal functionality", which will later be replaced by a more trust-
minimized mechanism. Let’s assume for now that everyone trusts this escrow.

In the Lightning Network, the receipt (proof of payment) could take the form of a secret that only
Dina knows. In practice, this secret would be a large random number that is large enough to
prevent others from guessing it (typically very, very large number, encoded using 256 bits!).

Dina generates this secret value R from a random number generator.

The secret could then be committed to the contract by including the SHA256 hash of the secret in
the contract itself, as follows:

\(H = SHA256(R)\)

We call this hash of the payment’s secret the payment hash. The secret which "unlocks" the
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payment is called the payment secret.

For now, we keep things simple and assume that Dina’s secret is simply the text line: Dinas secret.
In order to "commit" to this secret, she computes the SHA256 hash which when encoded in hex, can
be displayed as: 0575965b3b44be51e8057d551c4016d83cb1fba9ea8d6e986447ba33fe69f6b3. [1]

To facilitate Alice’s payment, Dina will create the secret and the payment hash and send the
payment hash to Alice.

Dina sends the hashed secret to Alice

Alice doesn’t know the secret but she can rewrite her contract to use the hash of the secret as a
proof of payment:

I (Alice) will reimburse you (Bob) with 12 gold coins if you can show me a valid message that
hashes to:`057596...`. You can acquire this message by setting up a similar Contract with Chan
who has to set up a similar contract with Dina. In order to assure you that you will get
reimbursed I will provide the 12 gold coins to an trusted escrow before you set up your next
contract.

This new contract now protects Alice from Bob not forwarding to Chan, protects Bob from not
being reimbursed by Alice, and ensures that there will be proof that Dina was ultimately paid via
the hash of Dina’s secret. This secret message that hashes to the 057596... is called a pre-image.

After Bob and Alice agree to the contract, and Bob receives the message from the escrow that Alice
has deposited the 12 gold coins, Bob can now negotiate a similar contract with Chan.

Note that since Bob is taking a service fee of 1 coin, he will only forward 11 gold coins to Chan once
Chan shows proof that he has paid Dina. Similarly, Chan will also demand a fee and will expect to
receive 11 gold coins once he has proved that he has paid Dina the promised 10 gold coins.
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Bob’s contract with Chan will read:

I (Bob) will reimburse you (Chan) with 11 gold coins if you can show me a valid message that
hashes to:`057596...`. You can acquire this message by setting up a similar contract with Dina. In
order to assure you that you will get reimbursed I will provide the 11 gold coins to an trusted
escrow before you set up your next contract.

Once Chan gets the message from the escrow that Bob has deposited the 11 gold coins, Chan sets up
a similar contract with Dina:

I (Chan) will reimburse you (Dina) with 10 golden coins if you can show me a valid message that
hashes to:`057596...`. In order to assure you that you will get reimbursed after revealing the
secret I will provide the 10 gold coins to an trusted escrow.

Everything is now in place. Alice has a contract with Bob and has placed 12 gold coins in escrow.
Bob has a contract with Chan and has placed 11 gold coins in escrow Chan has a contract with Dina
and has placed 10 gold coins in escrow. It is now up to Dina to reveal the secret, which is the pre-
image to the hash she has established as proof of payment.

Dina now sends "Dinas secret" to Chan.

He checks that "Dinas secret" hashes to +057596.... Chan now has proof of payment and so instructs
the escrow service to release the 10 golden coins to Dina.

Chan now provides the secret to Bob. Bob checks it and instructs the escrow service to release the
11 gold coins to Chan.

Bob now provides the secret to Alice. Alice checks it and instructs the escrow to release 12 gold
coins to Bob.

All the contracts are now settled. Alice has paid a total of 12 gold coins, 1 of which was received by
Bob, 1 of which was received by Chan, and 10 of which were received by Dina. With a chain of
contracts like this in place, Bob and Chan could not run away with the money because they
deposited it in escrow first.

However, one issue still remains. If Dina refused to release her secret pre-image, then Chan, Bob,
and Alice would all have their coins stuck in escrow but wouldn’t be reimbursed. And similarly if
anyone else along the chain failed to pass on the secret, the same thing would happen. So while no
one can steal money from Alice everyone can still lose money.

Luckily, this can be resolved by adding a deadline to the contract.

We could amend the contract so that if it is not fulfilled by a certain deadline, then the contract
expires and the escrow service returns the money to the person who made the original deposit. We
call this deadline a "time lock".

The deposit is locked with the escrow service for a certain amount of time, and is eventually
released even if no proof of payment was provided.
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In order to factor this in, the contract between Alice and Bob is once again amended with a new
clause:

Bob has 24 hours to show the secret after the contract was signed. If Bob does not provide the
secret by this time, Alice’s deposit will be refunded by the escrow service and the contract
becomes invalid.

Bob, of course, now has to make sure he receives the proof of payment within 24 hours. Even if he
successfully pays Chan, if he receives the proof of payment later than 24 hours he will not be
reimbursed. To remove that risk, Bob must give Chan and even shorter deadline.

In turn, Bob will alter his contract with Chan in the following way:

Chan has 22 hours to show the secret after the contract was signed. If he does not provide the
secret by this time, Bob’s deposit will be refunded by the escrow service and the contract becomes
invalid.

As you might have guessed, Chan is now incentivized to also alter his contract with Dina:

Dina has 20 hours to show the secret after the contract was signed. If he does not provide the
secret by this time, Bob’s deposit will be refunded by the escrow service and the contract becomes
invalid.

With such a chain of contracts we can ensure that, after 24 hours, the payment will successfully
deliver from Alice to Bob to Chan to Dina, or it will fail and everyone will be refunded. Either the
contract fails or succeeds, there’s no middle ground.

In the context of the Lightning Network, we call this "all or nothing" property atomicity.

As long as the escrow is trustworthy and faithfully performs its duty, then no party will have their
coins stolen in the process.

The pre-condition to this route working at all, is that all parties in the path have enough money to
satisfy the required series of deposits.

While this seems like a minor detail we will see in later this chapter that this requirement is
actually one of the more difficult issues for Lightning Network nodes. It becomes progressively
more difficult as the size of the payment increases. Furthermore, the parties cannot use their
money while it is locked in escrow.

Thus users forwarding payments face an opportunity cost for locking the money, which is
ultimately reimbursed through routing fees, as we saw in the example above.

Now that we’ve seen a physical payment routing example, we will see how this can be implemented
on the Bitcoin blockchain, without any need for third-party escrow. To do this we will be setting up
the contracts between the participants using Bitcoin Script. We replace the third-party escrow with
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smart contracts that implement a fairness protocol. Let’s break that concept down and implement
it!

Fairness Protocol
As we saw in the first chapter of this book, the innovation of Bitcoin is the ability to use
cryptographic primitives to implement a fairness protocol that substitutes trust in third parties
(intermediaries), with a trusted protocol.

In our gold coin example, we needed an "escrow" service in order to prevent any one of the parties
from reneging on their obligations. The innovation of cryptographic fairness protocols allows us to
replace the escrow service with a protocol.

The properties of the fairness protocol we want to create are:

Trsutless Operation

The participants in a routed payment do not need to trust each other, or any intermediary or
third party. Instead, they trust the protocol to protect them from cheating.

Atomicity

The payment is fully executed, or it fails and everyone is refunded. There is no possibility of an
intermediary collecting a routed payment and not forwarding it to the next hop. Thus, the
intermediaries can’t cheat or steal.

Multihop

The security of the system extends end-to-end for payments routed through multiple payment
channels, just as it is for a payment between the two ends of a single payment channel.

An optional, additional property, is the ability to split payments into multiple parts while
maintaining atomicity for the entire payment. These are called Multi-Part Payments (MPP) and are
explored further in [multipart_payments].

Implementing Atomic Trustless Multihop Payments

Bitcoin Script is flexible enough that there are dozens of ways to implement a fairness protocol that
has the properties of atomicity, trustless operation and multihop security. Choosing a specific
implementation is dependent on certain tradeoffs between privacy, efficiency and complexity.

The fairness protocol for routing used in the Lightning Network today is called a Hash Time-Locked
Contract (HTLC). HTLCs use a hash pre-image as the secret that unlocks a payment, as we saw in the
gold coin example in this chapter. The recipient of a payment generates a random secret number
and calculates its hash. The hash becomes the condition of payment and once the secret is revealed,
all the participants can redeem their incoming payments. HTLCs offer atomicity, trustless operation
and multihop security. While HTLCs are efficient and very simple, they involve a small compromise
of privacy (see [htlc_privacy_compromise]).

Another proposed mechanism for implementing routing is a Point Time-Locked Contract (PTLC).
PTLCs also achieve atomicity, trustless operation and multihop security, but do so with increased
efficincy and better privacy. Efficient implementation of PTLCs depends on a new digital signature
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algorithm called Schnorr signatures, which is expected to active in Bitcoin in 2021.

Revisiting our example
Let’s revisit our example from the first part of this chapter. Alice wants to "tip" Dina, with a
Lightning payment. Let’s say Alice wants to send Dina 50,000 satoshis as a tip.

For Alice to pay Dina, Alice will need Dina’s node to generate a Lightning invoice. We will discuss
this in more detail in [bolt11_invoices]. For now, let’s assume that Dina has a website that can
produce a Lightning invoice for tips.

TIP
Lightning payments can be sent without an invoice, using a feature called keysend,
which we will discuss in more detail in [keysend]. For now, we will explain the simpler
payment flow using an invoice.

Alice visits Dina’s site, enter the amount of 50,000 satoshis in a form and in response, Dina’s
Lightning node generate a payment request for 50,000 satoshis in the form of a Lightning invoice.

Alice requests an invoice from Dina’s website

As we saw in previous examples, we assume that Alice does not have a direct payment channel to
Dina. Instead, Alice has a channel to Bob, Bob has a channel to Chan and Chan has a channel to
Dina. To pay Dina, Alice must find a path that connects her to Dina. We will discuss that step in
more detail in [path_finding]. For now, let’s assume that Alice is able to gather information about
available channels and sees that there is a path from her to Dina, via Bob and Chan.

Now, Alice’s node can construct a Lightning payment. In the next few sections we will see how
Alice’s node constructs a Hash Time-Locked Contract (HTLCs) to pay Dina and how that HTLC is
forwarded along the path from Alice to Dina.
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Hash Time Locked Contracts (HTLCs)
In this section we explain how Hash Time Locked Contracts (HTLCs) work.

The first part of a Hash Time-Locked Contract is the "Hash". This refers to the use of a cryptographic
hash algorithm to commit to a randomly generated secret. Knowledge of the secret allows
redemption of the payment. The cryptographic hash function, guarantees that while it’s infeasible
for anyone to guess the secret pre-image, it’s easy for anyone to verify the hash, and there’s only
one possible pre-image that resolves the payment condition.

Alice has a Lightning invoice from Dina. Inside that invoice Dina has encoded a payment hash,
which is the cryptographic hash of a secret that Dina’s node produced. Dina’s secret is called the
payment pre-image. The payment hash acts as an identifier that can be used to route the payment to
Dina. The payment pre-image acts as a receipt and proof of payment once the payment is complete.

Alice gets a payment hash from Dina

In the Lightning Network, Dina’s payment pre-image won’t be a phrase like "Dina’s secret", but a
random number generated by Dina’s node. Let’s call that random number R.

Dina’s node will calculate a cryptographic hash of R, such that:

Calculating the payment hash

H = SHA256(R)

In Calculating the payment hash H is the hash, or payment hash and R is the secret or payment pre-
image.

The use of a cryptographic hash function is one element that guarantees trustless operation. The
payment intermediaries do not need to trust each other because they know that no one can guess
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the secret or fake it.

HTLCs in Bitcoin Script

In our gold coin example, Alice had a contract enforced by escrow like this:

Alice will reimburse Bob with 12 gold coins if you can show a valid message that hashes to:
0575...f6b3. Bob has 24 hours to show the secret after the contract was signed. If Bob does not
provide the secret by this time, Alice’s deposit will be refunded by the escrow service and the
contract becomes invalid.

Let’s see how we would implement this as an HTLC in Bitcoin Script. In HTLC implemented in
Bitcoin Script (BOLT3) we see an HTLC Bitcoin Script as currently used in the Lightning Network.
You can find this definition in BOLT3 - Transactions:

HTLC implemented in Bitcoin Script (BOLT3)

# To remote node with revocation key
OP_DUP OP_HASH160 <RIPEMD160(SHA256(revocationpubkey))> OP_EQUAL
OP_IF
    OP_CHECKSIG
OP_ELSE
    <remote_htlcpubkey> OP_SWAP OP_SIZE 32 OP_EQUAL
    OP_NOTIF
        # To local node via HTLC-timeout transaction (timelocked).
        OP_DROP 2 OP_SWAP <local_htlcpubkey> 2 OP_CHECKMULTISIG
    OP_ELSE
        # To remote node with preimage.
        OP_HASH160 <RIPEMD160(payment_hash)> OP_EQUALVERIFY
        OP_CHECKSIG
    OP_ENDIF
OP_ENDIF

Wow that looks complicated! Don’t worry though, we will take it one step at a time and simplfy it.

The Bitcoin Script currently used in the Lightning Network is quite complex because it is optimized
for on-chain space efficiency, which makes very compact but difficult to read.

In the following sections, we will focus on the main elements of the script and present simplified
scripts that are slightly different from what is actually used in Lightning.

Payment pre-image and hash verification

The core of an HTLC is the "hash", where payment can be made if the recipient knows the payment
pre-image. Alice locks the payment to a specific payment hash and Bob has to present a payment
pre-image to claim the funds. The Bitcoin system can verify that Bob’s payment pre-image is correct
by hashing it and comparing the result to the payment hash that Alice used to lock the funds.
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This part of an HTLC can be implemented in Bitcoin Script as follows:

OP_SHA256 <H> OP_EQUAL

Alice can create a transaction output that pays, 50,200 satoshi with a locking script above, replacing
<H> with the hash value 0575...f6b3 provided by Dina. Then, Alice can sign this transaction and
offer it to Bob:

Alice’s offers a 50,200 satoshi HTLC to Bob

OP_SHA256 0575...f6b3 OP_EQUAL

Bob can’t spend this HTLC until he knows Dina’s secret, so spending the HTLC is conditional on
Bob’s fullfilment of the payment all the way to Dina.

Once Bob has Dina’s secret, Bob can spend this output with an unlocking script containing the
secrect pre-image value R

The unlocking script and locking script would combined to produce:

<R> OP_SHA256 <H> OP_EQUAL

The Bitcoin Script engine would evaluate this script as follows:

1. R is pushed to the stack

2. The OP_SHA256 operator takes the value R off the stack and hashes it, pushing the result HR to
the stack

3. H is pushed to the stack

4. The OP_EQUAL operator compares H and HR. If they are equal, the result is TRUE, the script is
complete and the payment is verified.

Extending HTLCs from Alice to Dina

Alice will now extend the HTLC across the network so that it reaches Dina.

Propagating the HTLC across the network
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Alice has given Bob an HTLC for 50,200 satoshi. Bob can now create an HTLC for 50,100 satoshi and
give it to Chan. Bob knows that Chan can’t redeem Bob’s HTLC without broadcasting the secret, at
which point Bob can also use the secret to redeem Alice’s HTLC.

Since Alice’s HTLC is 100 satoshi more that the HTLC Bob gave to Chan, Bob will earn 100 satoshi as
a routing fee if this payment completes.

Bob isn’t taking a risk and isn’t trusting Alice or Chan. Instead, Bob is trusting that a signed
transaction together with the secret will be redeemable on the Bitcoin blockchain.

Similarly, Chan can extend a 50,000 HTLC to Dina. He isn’t risking anything or trusting Bob or Dina.
To redeem the HTLC, Dina would have to broadcast the secret, which Chan could use to redeem
Bob’s HTLC. Chan would also earn 100 satoshis as a routing fee.

Back-propagating the secret

Once Dina receives a 50,000 HTLC from Chan, she can now get paid. Dina could simply commit this
HTLC on-chain and spend it by revealing the secret in the spending transaction. Or, instead, Dina
can update the channel balance with Chan by giving him the secret. There’s no reason to incur a
transaction fee and go on-chain. So, instead, Dina sends the secret to Chan and they agree to update
their channel balances to reflect a 50,000 satoshi Lightning payment to Dina.

Notice Dina’s channel balance goes from 50,000 satoshi to 100,000 satoshi. Chan’s channel balance
is reduced from 200,000 satoshi to 150,000 satoshi. The channel capacity hasn’t changed, but 50,000
has moved from Chan’s side of the channel to Dina’s side of the channel.

Dina settles Chan’s HTLC off-chain
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Chan now has the secret and has paid Dina 50,000 satoshi. He can do this without any risk, because
the secret allows Chan to redeem the 50,100 HTLC from Bob. Chan has the option to commit that
HTLC on chain and spend it by revealing the secret on the Bitcoin blockchain. But, like Dina, he’d
rather avoid transaction fees. So instead, he sends the secret to Bob so they can update their
channel balances to reflect a 50,100 satoshi Lightning payment from Bob to Chan. Chan has paid
Dina 50,000 satoshi, and received 50,100 satoshi from Bob. So Chan has 100 satoshi more in his
channel balances, which he earned as a routing fee.

Chan settles Bob’s HTLC off-chain

Bob now has the secret too. He can use it to spend Alice’s HTLC on-chain. Or, he can avoid
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transaction fees by settling the HTLC in the channel with Alice. Bob sends the secret to Alice and
they update the channel balance to reflect a 50,200 satoshi Lightning payment from Alice to Bob.
Bob has recieved 50,200 satoshi from Alice and paid 50,100 satoshi to Chan, so he has an extra 100
satoshi in his channel balances from routing fees.

Bob settles Alice’s HTLC off-chain

Alice receives the secret and has settled the 50,200 satoshi HTLC. The secret can be used as a receipt
to prove that Dina got paid for that specific payment hash.

The final channel balances reflect Alice’s payment to Dina and the routing fees paid at each hop

Channel balances after the payment
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Preventing theft of HTLCs

HTLC timeout (failure)

OP_DROP <cltv_expiry> OP_CHECKLOCKTIMEVERIFY OP_DROP
OP_CHECKSIG

Incremental timelocks

In order to implement the "refund" functionality, we rely on the "absolute time lock" functionality
of Bitcoin script.

Alice can present this script to Bob in order to kick off the conditional payment. For the chained
aspect, Alice needs to be able to communicate the proper payment details to each hop in the route.
Recall that each hop will specify a forwarding fee rate, as well as other parameters that express
their forwarding policy. In addition to this forwarding rate, Alice also needs to be concerned about
what time locks to use. Each node in the hop needs some time to be able to settle the outgoing, then
incoming payment on-chain in the worst case. As a result, when constructing the final route, we
need to give each node some buffer time, we call this before time, the "time lock delta". Factoring in
this time-lock delta, the time-lock of the outgoing HTLC will decrease as the route progresses, as the
outgoing HTLC will expire before the incoming HTLC. This set of decrementing time-locks is critical
to the operation of the system, as it ensure out atomicity property for each hop, assuming they’re
able to get into the chain in time.

In the next section, we’ll go into the exact mechanism of how Alice is able to deliver forwarding
details to each hop in the route. In addition, we’ll dive further into proper time-lock construction, as
incorrect time-lock set up can violate our atomicity property and lead to a loss of funds.

[1] You can verify this by typing echo -n "Dinas secret" | sha256sum to your Linux command line shell.
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