In this section you will finally understand how payment channels can be connected to a network of payment channels via what we call routing.
When we say routing, we refer to the series of interactions across the network that allow a payment to _flow_ from point A to point B.
This differs from _path finding_ which was covered earlier as this refers to the _active_ process of sending payments, while path finding can be seen as a re-processing step.
An important rule of thumb to remember is that it's possible for a path to exist between Alice and Bob, yet there may be a lack of an active _route_ at any given point.
On concrete eaxmple of such a scenario can be illustrated by assuming that all the nodes connecting Alice and Bob are currently off-line.
In this case, one can examine the _payment graph_ to construct a path for a payment, but the payment cannot be sent as an _active route_ does not exist.
The innovation of routed payment channels, allows our gamer Gloria to receive funds from her viewers without being required to maintain a separate channel with every of her viewers who want to tip her.
Similarly, they cannot lose money while participating in the routing process assuming all time-locks along the route are constructed properly relative to the current on-chain fee market.k
In particular due to the use of onion routing, intermediary nodes are only explicitly aware of who came before them in the route, and the node that'll continue to forward the payment after them.
This process of connecting a series of payment channels with end-to-end security, and the existence of incentives for nodes to _forward_ payments, is considered one of the key innovations of the Lightning Network.
In this chapter, we'll dive into the mechanism of routing in the Lightning Network, detailing the precise manner in-which payments flow through the network.
First, we'll cover the concept of a conditional chained end to end secure payment, most commonly known by the name of the first known working construct: the Hash Time Locked Transaction (HTLC).
Having learned _how_ payments can be transmitted through the network, we'll then cover the concept of source routing, and the privacy preserving variant (onion routing) used in the network today.
Finally, we'll explore the exact mechanism of _payment forwarding_ and how the _structure_ (edges, fees, time-locks, etc) of the route is determined by the sender is transmitted to each individual node along the route.
Before we dive into the concept of a conditional chained end to end secure payment, let's walk through a simple motivating example.
Let us assume after Alice bought her coffee at Bob's coffee shop using a direction channel, she began to watch the live stream of our gamer Gloria who accepts donations via the Lightning Network from her viewers.
Alice and Gloria do not have a _direct_ channel connecting them, and don't wish to create one as they'd like to minimize the total number of channels they have open.
However, they do in fact have an _indirect path_ via the network of connected payment channels that comprises the Lightning Network.
Bob has an open channel with his the software developer Wei who helps him with technical issues of the point of sale system he uses in his coffee shop.
Wei is actually the owner of a large software company which also develops the game that Gloria plays so that she had opened a channel with the company to pay for the game's license, access to the server, and in game items.
If we draw out this series of payment channels, it's possible to manually trace a _path_ from Alice to Gloria that uses Bob and Wei as supporting intermediary routing nodes.
Alice can then craft a _route_ from this outlined path, and use it to send a tip of a few thousand satoshis to Gloria, with the payment being _forwarded_ by Bob and Wei.
To understand how the Lightning Network protects the payment packages that are being routed through the network we compare the situation of indirect payments with physical payments with gold coins in the offline world.
Let us assume Alice wanted to give 10 gold coins to Gloria and decides to ask Bob and Wei for help.
While this contract is nice in the abstract, in the real world, Alice runs the risk that Bob might just breach the contract and hope to not get caught by law enforcement.
Even if Bob got caught by law enforcement, Alice faces the risk that he might be bankrupt, rendering her unable to actually claim those 10 golden coins.
Assuming these issues are magically solved it, it's still unclear how to leverage such a contract to achieve our desired outcome: the coins ultimately being delivered to Gloria.
_I (Alice) will reimburse you (Bob) with 10 golden coins if you can proof to me (for example via a receipt) that you already have delivered 10 golden coins to Wei_
Now you might ask yourself why should Bob sign such a contract as Bob now has the risk of _not_ getting reimbursed?
Typically, in economic systems, participants must be properly compensated for contractual risk (whatever that may be), otherwise, they wouldn't agreed to said contract.
Even putting aside the risk, Bob must _already_ have 10 gold coins to send to Gloria, otherwise, he wouldn't be able to participate in the contract.
Therefore Bob must deal with the opportunity cost of allocating his capital to this contract, in addition to the counter party risk that would arise if Alice doesn't hold up her end.
Adjusting things slightly to compensate Bob, Alice could offer a routing fee of Golden coin to Bob, and another to Wei who bares similar costs.
Thus we alter the contract yet again, to factor in this new information:
_I (Alice) will reimburse you (Bob) with 12 golden coins if you can proof to me (for example via a receipt) that you already have delivered 11 golden coins to Wei_
As there is still the issue of trust and that even law inforcement does not protect Alice and Bob from malicious behavior they decide to add an escrow service.
Of course Alice and Bob both have to trust this escrow service.
Having such an escrow Alice could already provide the 12 golden coins to that service which would only release them to Bob if Bob shows the proof of delivering 11 golden coins to Wei.
In fact this proof could include a secret that only Gloria knows but the contract could be commited to this secret for example by including the sha256 hash of the secret to the contract.
We call this hash the payment hash.
In reality Gloria would come up with a large random number as a secret.
This is to be really secure and prevent others from guessing it.
But let us assume that in our case Glorias secret take reads `*Glorias secret*`.
_I (Alice) will reimburse you (Bob) with 12 golden coins if you can show me a valid message - we call it preimage - that hashes to `*f23c83babfb0e5f001c5030cf2a06626f8a940af939c1c35bd4526e90f9759f5*`. You can acquire this message by setting up a similar Contract with Wei who has to set up a similar contract with Gloria. In order to assure you that you will get reimbursed I will provide the 12 Golden coins to an trusted escrow before you set up your next contract._
After Bob and Alice agree to the contract and Bob receives the message from the escrow that Alice has deposited the 12 golden coins Bob negotiates a very similar contract with Wei.
Note that due to the service fees he will only forward 11 golden coins to Wei and demand from Wei who also wants to earn a fee of 1 golden coin to show proof that 10 golden coins have been delivered to Gloria.
_I (Bob) will reimburse you (Wei) with 11 golden coins if you can show me a valid message - we call it preimage - that hashes to `*f23c83babfb0e5f001c5030cf2a06626f8a940af939c1c35bd4526e90f9759f5*`. You can acquire this message by setting up a similar contract with Gloria. In order to assure you that you will get reimbursed I will provide the 11 Golden coins to an trusted escrow before you set up your next contract._
_I (Wei) will reimburse you (Gloria) with 10 golden coins if you can show me a valid message - we call it preimage - that hashes to `*f23c83babfb0e5f001c5030cf2a06626f8a940af939c1c35bd4526e90f9759f5*`. In order to assure you that you will get reimbursed after revealing the secret I will provide the 10 Golden coins to an trusted escrow._
Since she initially came up with the secret and committed to it in form of the payment hash she obviously is able to provide the secrete to Wei and their escrow service.
With such a chain of contracts Bob and Wei have not been able to run with the money as they actually deposited money first.
However if Gloria or anyone along this chain does not release the secrete preimage everyone has already send golden coins to their escrow service but will never get reimbursed.
So while no one could steal money from Alice everyone could still lose money.
Luckily this can be resolved by including a deadline to the contract.
Reaching the deadline the contract has to be fulfilled or otherwise it would be invalidated and the escrow service would return the money to the person who made the original deposit.
We call this deadline a time lock as the deposit is locked with the escrow service for a certain amount of time and then released even if no proof of payment was provided.
_Bob has 24 hours to show the secret after the contract was signed. If the time has passed Alice will get her deposit back from the escrow service and the contract becomes invalid._
_Wei has 22 hours to show the secret after the contract was signed. If the time has passed Bob will get his deposit back from the escrow service and the contract becomes invalid._
_Gloria has 20 hours to show the secret after the contract was signed. If the time has passed Wei will get his deposit back from the escrow service and the contract becomes invalid._
With such a chain of contracts we can be sure that after 24 hours of setting up the first contract that the payment was either successfully delivered from Alice via Bob and Wei to Gloria or that the payment has failed and was not conducted at all.
While this seems like a minor necessity we will see in a later chapter about pathfinding that this requirement is actually one of the harder issues for Lightning Network nodes.
In the following two sections you will learn that the bitcoin scripting language is able to set up such contracts which we call hashed time locked contracts.
You will see that the bitcoin network acts as the trusted third party or escrow for those HTLCs.
This is true as the HTLCs are created as outputs in this commitment transactions of the payment channels which would be enforced by the bitcoin network in case some party becomes unresponsive or tries to act in a fraudulent way.
Finally in the last section you will learn how the path of intermediaries is encrypted and hidden from the intermediaries so that they will only know their next hop with whom they should set up an HTLC and deliver the encrypted message that has more forwarding instructions.
In previous chapters we have seen that payment channels are maintained by two nodes by keeping two disjoint sequences of commitment transactions.
The pair of latest commitment transactions in both sequences encodes the current, agreed upon balance in the channel.
We have stated that two channel partners negotiate a new commitment transaction in order to change the balance and conduct a payment from one to another.
We are finally at the point to explain the communications protocol via Lightning messages and the usage of HTLCs that is executed within a payment channel to change the balance.
The same protocol will be executed along a path of channels if the network of channels is being utilized to make a payment between two participants without requiring them to have a dedicated payment channel connecting them directly.
Let us start with the payment channel with a capacity of 100 mBTC between Alice and Bob.
at its current state Alice and Bob have agreed that 20 mBTC belong to Bob and 80 mBTC belong to Alice.
As Alice bought a coffee flatrate for the week she has to pay 15 mBTC to Bob and wants to use this channel.
Just creating a new pair of commitment transactions and signing them is not so easy as the old ones have to be invalidated by sharing the revocation secret.
This process should be executed in a way that it is atomic meaning the nodes will either be able to negotiate a new state without giving the other side the chance to play tricks or it should fail.
cltv stands for OP_CHECKTIMELOCKVERIFY and is the OP_CODE that will be used in the HTLC output and serve as the deadline in which the contract is valid.
Finally in the last data field there are 1336 Bytes of data included which is an `onion routing packet`.
The format of this packet will be discussed in the last section of this chapter.
For now it is important to note that it includes encrypted routing hints and information of the payment path that can only be partially decrypted by the recipient of the onion routing packet to extract information to whom to forward the payment or to learn that one as the final recipient.
In any case the onion roting packet is always of the same size preventing the possibility to guess the position of an intermediary node within a path.
In our particular case Bob will be able to decrypt the first couple bytes of the onion routing packet and learn that the payment is not to be forwarded but intended to be for him.
The received information is enough for Bob to create a new commitment transaction.
This commitment transaction now has not only 2 outputs encoding the balance between Alice and Bob but a third output which encodes the hashed time locked contract.
We can see that there are basically three conditions to claim the output.
1. Directly if a revocation key is known. This would happen if at a later state Bob fraudulently publishes this particular commitment transaction. As a newer state could only be agreed upon if Alice has learnt Bob's half of the revocation secret she could directly claim the funds and keep them even if Bob was later able to provide a proof of payment. This is mainly described in this line `OP_DUP OP_HASH160 <RIPEMD160(SHA256(revocationpubkey))> OP_EQUAL` and can be down by using `<revocation_sig> <revocationpubkey> as a witness script.
2. If Bob has successfully delivered the payment and learnt the preimage he can spend the HTLC output with the help of the preimage and his `local_HTLC_secret`. This is to make sure that only Bob can spend this output if the commitment transaction hits the chain and not any other third party who might know the preimage because they had been included in the routing process. Claiming this output requires an HTLC-success transaction which we describe later.
3. Finally Alice can use her `remote_HTLC_secret` to spend the HTLC output after the timeout of `cltv_expiry` was passed by using the following witness script `<remoteHTLCsig> 0`
As the commitment transaction spends the 2 out of 2 multisig funding transaction Bob needs two signatures after he constructed this commitment transaction.
He can obviously compute his own signature but he needs also the signature from Alice.
As commitment transactions can have several HTLCs and HTLC success transactions need signatures which might not be provided at the time when they are needed those signatures are all already send over to Bob.
If all signatures are valid Bob has a new commitment transaction.
At this time he would be able to publish either the old one or the new one without getting a penality as the old one is not yet revoked and invalidated.
However this is save for Alice as Bob has less money in this old state and is economically not incentivised to publish the old commitment transaction.
Alice on the other side has no problem if Bob publishes the new commitment transaction as she wanted to send him money.
Should Bob decide to sabotage to future steps of the protocol Alice can either publish her commitment transaction without Bob being able to punish her.
Despite the fact that Bob has a new commitment transaction with two valid signatures and an HTLC output inside he cannot seen his HTLC as being set up successfully.
That is why - in the case that he is not the final recipient of the funds - he should not forward the HTLC yet by setting up a new HTLC on the next channel with Wei.
Alice will not invalidate her commitment transaction yet as she has to first get her new commitment transaction and she wants Bob to invalidate his old commitment transaction which he can safely do at this time.
Bob shares the the `per_commitment_secret` of the old commitment transaction which serves as the revocation key and would allow Alice in future to penalize Bob if he publishes the old commitment transaction without the HTLC output.
As in a future Alice and Bob might want to negotiate additional commitment transactions he already shares back the `next_per_commitment_point` that he will use in his next commitment transaction.
Alice checks that the `per_commitment_secret` produces the last `per_commitment_point` and constructs her new commitment transaction with the HTLC output.
Alice's version of the HTLC output is slightly different to the one that Bob had.
The reason is the asymmetries of the penalty based payment channel construction protocol.
Alice is offering in her commitment transaction an HTLC to the `remote` partner of the channel while Bob as accepting and offered HTLC to himself the `local` partner of the channel.
Bob can redeem the HTLC with `<remoteHTLCsig> <payment_preimage>` as the witness script and in case the commitment transaction is revoked but published by Alice, Bob can trigger the penality by spending this output immediately with the following witness script `<revocation_sig> <revocationpubkey>`.
Now Bob and Alice both have a new commitment transaction with and additional HTLC output and we have achieved a major step towards updating a payment channel.
This yields another round of communication with Lightning messages and setting up additional commitment transactions which in case of good cooperation remove the outstanding HTLCs.
Interestingly enough the `commitment_signed` and `revoke_and_ack` mechanism that we described to add an HTLC can be reused to update the commitment transaction.
If Bob was the recipient of the 15 mBTC and knows the preimage to the payment hash Bob can settle the HTLCs by sending and `update_fulfill_htlc` Lightning message to Alice.
This message has the type 130 and only 3 data fields:
* [`channel_id`:`channel_id`]
* [`u64`:`id`]
* [`32*byte`:`payment_preimage`]
As other messages Bob uses the `channel_id` field to indicates for which channel he returns the preimage.
The htlc that is being removed is identified by the same `id` that was used to set up the HTLC in the commitment transaction initially.
You might argue that Alice would not need to know the id of the HTLC for which Bob releases the preimage as the preimage and payment hash could be unique.
When designing, implementing or studying a protocol one should ask: Is it safe to this or that in this moment of the protocol and can this be abused. We discussed for example the messages that where necessary for an HTLC to become valid. We pointed out that Bob should not see the received HTLC as valid even though he already has a new commitment transaction with signatures and invalidated his old commitment transaction before Alice also revoked her old commitment transaction. We also saw that no one is able to mess with the protocol of setting up a commitment transaction as in the worst case the protocol could be aborted and any dispute could be resolved by the Bitcoin Network. In the same way we should ask ourselves is it safe for Bob to just send out and release the preimage even though neither he nor alice have created the new pair of commitment transactions in which the HTLCs are removed. It is important to take a short break and ask yourself if Bob will in any case be able to claim the funds from the HTLC if the preimage is correct?
Imagine Alice decides that she would not want to pay Bob anymore and does not respond anymore to create a new pair of commitment transactions with the removed HTLC and the Balance on Bob's end.
In that case Bob could just force close the channel and publish his latest version of the commitment transaction.
As the time lock of the HTLC is not over yet with an onchain success transaction Bob would be able to claim and settle his 15 mBTC as he is the only person who is able to spend the HTLC output in the commitment transaction.
The other way around meaning Bob and Alice would negotiate a new commitment transaction with the removed HTLC would never be save for Alice.
If the signatures for the new commitment transaction are exchanged Bob has received the money and could decide not to release the preimage.
Isn't it remarkable that even though the process of exchanging funds for an preimage seems to be happening concurrently at the same moment in time in reality it is actually happening one step after another but in the right order.
So far you have learnt that payment channels can be connected to a network which can be utilized to send payment from one participant to another one through a path of payment channels.
You have seen that with the use of HTLCs the intermediary nodes along the path are not able to steal any funds that they are supposed to forward and you have also learnt how a node can set up and settle an HTLC.
The short answer to the first questions is that only the sender decides which path to choose.
Despite the fact that the Lightning Network is currently running the second question is still not answered in an optimal way and became a serious research topic.
For now we will only say that in the standard case the sender more or less randomly selects and tries paths of channels until it is possible to send the amount along that selected path.
Neither do they know whether the peer on the receiving channel initiated the payment nor do they know whether the peer on the outgoing channel is the final recipient of the payment.
As many upper layer protocols did not include end to end encryption we learnt from the Snoweden revelations that spying agencies have been massively collecting data that was transfered over the internet together with the meta data like IP addresses of senders and recipients.
The SHINX mix format was originally designed to allow email remails to offer the possibility to send an answer without creating a security threat of the remailer service being able to know who was communicating with whom.
While the Lightning Network also uses an onion routing scheme it is actually very different to the onion routing scheme that is used in the TOR network.
The biggest difference is that TOR is being used for arbitrary data to be exchanged between two participants where on the Lightning Network the main use case is to pay people and transfer data that encodes monetary value.
On the Lightning Network there is no analogy to the exit nodes of the Tor Network which on the TOR network produce a security risk. Lightning user should still not get the impression that their data and information is perfectly secure. Knowing the announced fee rates and CLTV deltas a node might be able to guess the destination of an onion.
In TOR the security can be compromised if all randomly chosen TOR hops are acting together. In Lightning the payment hash identifies a payment and thus not every node along the path needs to be compromised in order to attack the security.
On the TOR network nodes are basically connected via a full graph as every node could create an encrypted connection with every other node on top of the Internet Protocol almost instantaneously and at no cost. On the Lightning Network payments can only flow along existing payment channels. Removing and adding of those channels is a slow and expensive process as it requires onchain bitcoin transactions.
On the Lightning Network nodes might not be able to forward a payment package because they do not own enough funds on their side of the payment channel. On the other hand there are hardly any plausible reasons other then its wish to act maliciously why a TOR node might not be able to forward an onion.
Last but not least the Lightning Network can actually run on TOR.
We note that there might have been alternative paths from Alice to Gloria but for now we will just assume it is this path that Alice has decided to use.
You have already learnt that Alice needs to set up an HTLC with Bob via and `update_add_htlc` message.
However Bob who receives the onion cannot read all the information about the path as most of the onion is hidden from him through a sequence of encryptions.
For example after Bob received the onion from Alice he will be able to decrypt the first layer and he will only see the information that he is supposed to forward the onion to Wei by setting up an HTLC with Wei.
For example Bob will only know that Alice offered him an HTLC and sent him an onion and that he is supposed to offer an HTLC to Wei and forward a slightly modified onion.
While the Onion is decrypted layer by layer while it travels along the path from Alice via Bob and Wei to Gloria it is created from the inside layer to the outside layers via several rounds of encryption.
Let us now look at the construction of the Onion that Alice has to follow and at the exact information that is being put inside each layer of the onion.
2. The header consisting of a public key that can be used by the recipient to produce the shared secret for decrypting the outer layer and to derive the public key that has to be put in the header of the modified onion for the next recipient.
While the TLV format offers more flexibility in both cases the routing information that is encoded into the onion is the same for every but the last hop.
You can see that Alice put the encrypted payload inside the full Onion Package which contains a the public keys from the secret key that she used to derive the shared secret.
When David receives the Onion package he will extract the public key from the unencrypted part of the onion package.
The property of the Elliptic Curve Diffie Hellmann key exchange is that if he multiplies this public key with his private node key he will get the same shared secret as a result as Alice did.
With the same argument as before we apply the law of associativity and apply the definition of public keys resulting in `(d*ek_d)*G = d*(ek_d*G) = d*EPK_D`.
We just saw why `ek_d*D = d*EPK_D = ss_d` and why Alice and Davide will be able to derive the same shared secret if Alice puts the ephemeral public key inside the onion.
Thus she starts with the Realm Byte that she will set to 0 again.
Then comes the short channel id.
This is set to 452 as Wei is supposed to use that channel to forward the onion.
She sets the amount to 3000 satoshi as this is the amount that David is supposed to receive.
Finally she uses the CLTV delta that was announced for this channel on the gossip protocol and that Wei should use for the HTLC when he forwards the Onion.
Again 12 Bytes of zeros are padded and an HMAC is computed.
Note that she did not have to compute filler this time as she already has too much data with the encrypted inner onion.
That is why the inner onion had to be truncated at the end.
This is the plain text version of Weis Onion payload and can be seen in the following diagram:
Thus after Wei decrypts his layer he can use the shared secret and his ephemeral public key to derive the ephemeral public key that David is supposed to use and store it in the header of the Onion that he forwards to David.
Similarly it is important to recognize that Alice removed data from the end of Davids onion payload to create space for the per hop data in Wei's onion.
Thus when Wei has received his onion and removed his routing hints and per hop data the onion would be to short and he somehow needs to be able to append the 65 Bytes of filled junk data in a way that the HMACs will still be valid.
This process is of filler generation as well as the process of deriving the ephemeral keys is described in the end of this chapter.
What is important to know is that every hope can derive the Ephemeral Public key that is necessary for the next hop and that the onions save space by always storing only one ephemeral key instead of all the keys for all the hops.
Bob on the other hand will only forward the onion if the difference between the mount to forward and the HTLC that Alice sets up while transferring the Onion to him is large enough to cover for the fees that he would like to earn.
We have not discussed the exact cryptographic algorithms and schemes that are being used to compute the ciphertext from the plain text.
Also we have not discussed how the HMACs are being computed at every step and how everything fits together while the Onions are always being truncated and modified on the outer layer.
If everything until here made perfect sense to you and you want to learn about those details we believe that you have all the necessary tools at hand to read BOLT 04 which is why we decided not to include all those technical details here in the book.
BOLT 04 is the open source specification of the onion routing scheme that is being used on the Lightning Network and a perfect resource for the missing details.
As every layer of the Onion is encrypted by Alice in such a way that only the respective recipient can decrypt their layer Alice needs to come up with a sequence of encryption keys that she will use for each and every hop.
The main concept that is being used is the shared secret computation via an elliptic Curve Diffie Hellmann Key exchange (ECDH) between Alice and each of the hops.
- The 8 Byte `short_channel_id` indicates on which channel the onion should be forwarded next
- The 8 Bytes `amt_to_forward` is a 64 Bit unsigned integer that encodes an amount in millisatoshi and indicates the amount that is supposed to be forwarded
- The 4 Bytes `cltv_delta` is a 32 Bit unsigned integer that is used for the time locks in the HTLCs.
- Finally there are 12 Byte left for padding and future versions and updates of the onion package format.
Interestingly enough Alice can construct the onion with different encryption keys for Bob, Wei and Gloria without the necessity to establish a peer connection with them.
As other nodes she has learnt about the existence of public payment channels and the public `node_id` of other participants via the gossip protocol which we described in its own chapter.
In order to have a different encryption key for every layer Alice produces a shared secret with each hop using the public `node_id` of each node and conduct an Elliptic Curve Diffie Hellmann Key exchange (ECDH).
Luckily there is a nice deterministic way in which she can derive different sessions keys for every hop and execute the Diffie Hellmann and allow the hops to use their shared secret to derive the next session public key.
Of course the Lightning Network protocol could have been designed in a way that Alice will only use her node's key to conduct the ECDH with every nodes public key.
However she would have to put her public key in the header of the onion.
In the first part of the routing chapter you have learnt that payments securely flow through the network via a path of HTLCs.
You saw how a single HTLC is negotiated between two peer and added to the commitment transaction of each peer.
In the second part you have seen how the necessary information for setting up HTLCs along a path of hops are being transfered via onions from the source to the sender.
Most importantly it is absolutely necessary that you understand that once your node sent out an onion on your behalf (most likely because you wanted to pay someone) Everything that happens to the onion is now out of your control.
* You cannot force nodes to send back an error if they cannot forward the onion because of missing liquidity or other reasons.
* You cannot be sure that the recipient has the preimage to the payment hash or releases it as soon as the HTLCs of the correct amount arrived.
By setting up an HTLC - which you do by sending out an onion - you have committed to settle the HTLCs in exchange for the preimage if the preimage arrives before the absolute timelock of the HTLC.
This can be very frustrating from a use experience point of view.
You want to quickly pay a person but the payment path that your node choose has CLTV deltas that quickly add up to several 100 blocks which is a couple of days.
This means now that if nodes on the path misbehave - on purpose or maybe just because they have a downtime which your node didn't know about - you will have to wait even though you don't see a preimage.
You must not send out another onion along a different path because there is a risk that both payments will settle eventually.
While our user experience is that most payments find a path and settle in far less than 10 seconds the Lightning Network protocol cannot and does not give any service level agreement that within this time payments will settle or fail.
There are ideas out that might solve this issue to some degree by allowing the payer to abort a payment. You can find more about that under the terms `cancelable payments` or `stuckless payments`. However the proposals that exist only reverse the problem as now the sender can misbehave and the recipient looses control. Another solution is to use many paths in a multipath payment and include some redundancy and ignore the problem that a path takes longer to complete.
* A node has not enough liquidity to set up the next HTLC
* The next payment channel does not exist anymore as it might have been closed while the onion was routed to node that was supposed to forward the onion along the channel.
* While the channel might still be open - as the funding transaction was never spent - it might happen that the other peer is offline. This of course prevents the node to forward the onion.
* The key exchanges of the sender might have been wrong so the decryption of the onion or the HMCAs do not match. (also because someone tried to tamper with the onion)
* The recipient might not have issued an invoice and does not know the payment details.
* The amount of the final HTLC is too low and the recipient does not want to release the preimage.
The process makes sure that the sender of the onion and recipient of the reply can be sure that the error really originated from the node that the error messages says.
Thus Bob would never agree to remove the HTLC with Alice unless he already has removed his HTLC with Wei.
If however the HTLC between Alice and Bob are set up and the HTLC between Bob and Wei are set up but Wei encounters problems with forwarding the onion it is perfectly Wei has more options than Alice.
While sending back the error Onion to Bob Wei could ask him to remove the HTLC.
Bob has no risk in removing the HTLC with Wei and Wei also has no risk as there is no downstream HTLC.
Removing an HTLC is happening very similar to adding HTLCs.
In the case of errors peers signals that they wish to remove the HTLC by sending an `update_fail_htlc` or `update_fail_malformed_htlc` message.
These messages contain the id of an HTLC that should be removed in the next version of the commit transaction.
In the same handshake like process that was used to exchange `commitment_signed` and `revoke_and_ack` messages the new state and thus pair of commitment signatures has to be negotiated and agreed upon.
This also means while the balance of a channel that was involved in a failed routing process will not have changed at the end it will have negotiated two new commitment transactions.
Despite having the same balance it must not got back to the previous commitment transaction which did not include the HTLC as this commitment transaction was revoked.
In the last section you you understood the error cases that can happen with onion routing via the chain of HTLCs.
You have learnt how HTLCs are removed if there is an error.
Of course HTLCs also need to be removed and the balance needs to be updated if the chain of HTLCs was successfully set up to the destination and the preimage is being released.
Not surprisingly this process is initiated with anther lightning message called `update_fulfill_htlc`.
Recalling the complex protocol with `commitment_signed` and `revoke_and_ack` messages you might wonder how to make this exchange `preimage` for new state atomic.
The cool thing is it doesn't have to be.
Once a channel partner with an accepted incoming HTLC knows the preimage can savely just pass it to the channel partner.
That is why the `update_fulfill_htlc` message contains only the `channel_id` the `id` of the HTLC and the `preimage`.
You might wonder that channel partner could now refuse to sign a new channel state by sending `commitment_siged` and `revoke_and_ack` messages.
This is not a problem though.
In that case the recipient of the offered HTLC can just go on chain by force closing the channel.
Accepting and HTLC removes funds from a peer that the peer cannot utilize unless the HTLC is removed due to success or failure.
Similarly forwarding an HTLC binds some funds from your nodes payment channel until the HTLC is being removed again.
As we explained in the very beginning of the chapter engaging into the forwarding process of HTLCs does neither yield a direct risk to loose funds nor does it gain the chance to gain funds.
In economics and financial mathematics the idea to pay another person that takes a risk is widely spread and seems reasonable.
Owners of routing nodes might want to monitor the routing behavior and opportunities and compare them to the onchain costs and the opportunity costs in order to compute their own routing fees that they wish to charge to accept and forward HTLCs.
Instead of setting up an HTLC the amount is taken from the output of the sender but not added to the output of the recipient.
Thus the HTLCs which are below the dust limit can understood as additional fees in the commitment transaction.
Most Lightning Nodes support the configuration of minimum accepted HTLC values.
Operators have to consider if they want to risk overpaying fees or loosing funds in the forced channel close cases because the commitment transactions have been added to the fees.