[fmt] bump version

pull/1205/head
Tim Stack 9 months ago
parent 6edc9268d7
commit 7f2841065c

@ -1,4 +1,4 @@
// Formatting library for C++ - dynamic format arguments
// Formatting library for C++ - dynamic argument lists
//
// Copyright (c) 2012 - present, Victor Zverovich
// All rights reserved.

@ -377,8 +377,8 @@ auto write_encoded_tm_str(OutputIt out, string_view in, const std::locale& loc)
unit_t unit;
write_codecvt(unit, in, loc);
// In UTF-8 is used one to four one-byte code units.
unicode_to_utf8<code_unit, basic_memory_buffer<char, unit_t::max_size * 4>>
u;
auto u =
to_utf8<code_unit, basic_memory_buffer<char, unit_t::max_size * 4>>();
if (!u.convert({unit.buf, to_unsigned(unit.end - unit.buf)}))
FMT_THROW(format_error("failed to format time"));
return copy_str<char>(u.c_str(), u.c_str() + u.size(), out);
@ -519,7 +519,7 @@ inline std::tm gmtime(std::time_t time) {
}
#endif
};
dispatcher gt(time);
auto gt = dispatcher(time);
// Too big time values may be unsupported.
if (!gt.run()) FMT_THROW(format_error("time_t value out of range"));
return gt.tm_;
@ -530,50 +530,7 @@ inline std::tm gmtime(
return gmtime(std::chrono::system_clock::to_time_t(time_point));
}
FMT_BEGIN_DETAIL_NAMESPACE
// DEPRECATED!
template <typename Char>
FMT_CONSTEXPR auto parse_align(const Char* begin, const Char* end,
format_specs<Char>& specs) -> const Char* {
FMT_ASSERT(begin != end, "");
auto align = align::none;
auto p = begin + code_point_length(begin);
if (end - p <= 0) p = begin;
for (;;) {
switch (to_ascii(*p)) {
case '<':
align = align::left;
break;
case '>':
align = align::right;
break;
case '^':
align = align::center;
break;
}
if (align != align::none) {
if (p != begin) {
auto c = *begin;
if (c == '}') return begin;
if (c == '{') {
throw_format_error("invalid fill character '{'");
return begin;
}
specs.fill = {begin, to_unsigned(p - begin)};
begin = p + 1;
} else {
++begin;
}
break;
} else if (p == begin) {
break;
}
p = begin;
}
specs.align = align;
return begin;
}
namespace detail {
// Writes two-digit numbers a, b and c separated by sep to buf.
// The method by Pavel Novikov based on
@ -1997,7 +1954,7 @@ struct chrono_formatter {
}
};
FMT_END_DETAIL_NAMESPACE
} // namespace detail
#if defined(__cpp_lib_chrono) && __cpp_lib_chrono >= 201907
using weekday = std::chrono::weekday;
@ -2047,80 +2004,67 @@ template <typename Char> struct formatter<weekday, Char> {
template <typename Rep, typename Period, typename Char>
struct formatter<std::chrono::duration<Rep, Period>, Char> {
private:
format_specs<Char> specs;
int precision = -1;
using arg_ref_type = detail::arg_ref<Char>;
arg_ref_type width_ref;
arg_ref_type precision_ref;
bool localized = false;
basic_string_view<Char> format_str;
using duration = std::chrono::duration<Rep, Period>;
format_specs<Char> specs_;
detail::arg_ref<Char> width_ref_;
detail::arg_ref<Char> precision_ref_;
bool localized_ = false;
basic_string_view<Char> format_str_;
using iterator = typename basic_format_parse_context<Char>::iterator;
struct parse_range {
iterator begin;
iterator end;
};
FMT_CONSTEXPR parse_range do_parse(basic_format_parse_context<Char>& ctx) {
auto begin = ctx.begin(), end = ctx.end();
if (begin == end || *begin == '}') return {begin, begin};
public:
FMT_CONSTEXPR auto parse(basic_format_parse_context<Char>& ctx)
-> decltype(ctx.begin()) {
auto it = ctx.begin(), end = ctx.end();
if (it == end || *it == '}') return it;
begin = detail::parse_align(begin, end, specs);
if (begin == end) return {begin, begin};
it = detail::parse_align(it, end, specs_);
if (it == end) return it;
begin = detail::parse_dynamic_spec(begin, end, specs.width, width_ref, ctx);
if (begin == end) return {begin, begin};
it = detail::parse_dynamic_spec(it, end, specs_.width, width_ref_, ctx);
if (it == end) return it;
auto checker = detail::chrono_format_checker();
if (*begin == '.') {
if (*it == '.') {
checker.has_precision_integral = !std::is_floating_point<Rep>::value;
begin =
detail::parse_precision(begin, end, precision, precision_ref, ctx);
it = detail::parse_precision(it, end, specs_.precision, precision_ref_,
ctx);
}
if (begin != end && *begin == 'L') {
++begin;
localized = true;
if (it != end && *it == 'L') {
localized_ = true;
++it;
}
end = detail::parse_chrono_format(begin, end, checker);
return {begin, end};
}
public:
FMT_CONSTEXPR auto parse(basic_format_parse_context<Char>& ctx)
-> decltype(ctx.begin()) {
auto range = do_parse(ctx);
format_str = basic_string_view<Char>(
&*range.begin, detail::to_unsigned(range.end - range.begin));
return range.end;
end = detail::parse_chrono_format(it, end, checker);
format_str_ = {it, detail::to_unsigned(end - it)};
return end;
}
template <typename FormatContext>
auto format(const duration& d, FormatContext& ctx) const
auto format(std::chrono::duration<Rep, Period> d, FormatContext& ctx) const
-> decltype(ctx.out()) {
auto specs_copy = specs;
auto precision_copy = precision;
auto begin = format_str.begin(), end = format_str.end();
auto specs = specs_;
auto precision = specs.precision;
specs.precision = -1;
auto begin = format_str_.begin(), end = format_str_.end();
// As a possible future optimization, we could avoid extra copying if width
// is not specified.
basic_memory_buffer<Char> buf;
auto buf = basic_memory_buffer<Char>();
auto out = std::back_inserter(buf);
detail::handle_dynamic_spec<detail::width_checker>(specs_copy.width,
width_ref, ctx);
detail::handle_dynamic_spec<detail::precision_checker>(precision_copy,
precision_ref, ctx);
detail::handle_dynamic_spec<detail::width_checker>(specs.width, width_ref_,
ctx);
detail::handle_dynamic_spec<detail::precision_checker>(precision,
precision_ref_, ctx);
if (begin == end || *begin == '}') {
out = detail::format_duration_value<Char>(out, d.count(), precision_copy);
out = detail::format_duration_value<Char>(out, d.count(), precision);
detail::format_duration_unit<Char, Period>(out);
} else {
detail::chrono_formatter<FormatContext, decltype(out), Rep, Period> f(
ctx, out, d);
f.precision = precision_copy;
f.localized = localized;
using chrono_formatter =
detail::chrono_formatter<FormatContext, decltype(out), Rep, Period>;
auto f = chrono_formatter(ctx, out, d);
f.precision = precision;
f.localized = localized_;
detail::parse_chrono_format(begin, end, f);
}
return detail::write(
ctx.out(), basic_string_view<Char>(buf.data(), buf.size()), specs_copy);
ctx.out(), basic_string_view<Char>(buf.data(), buf.size()), specs);
}
};
@ -2128,21 +2072,23 @@ template <typename Char, typename Duration>
struct formatter<std::chrono::time_point<std::chrono::system_clock, Duration>,
Char> : formatter<std::tm, Char> {
FMT_CONSTEXPR formatter() {
this->format_str = detail::string_literal<Char, '%', 'F', ' ', '%', 'T'>{};
this->format_str_ = detail::string_literal<Char, '%', 'F', ' ', '%', 'T'>{};
}
template <typename FormatContext>
auto format(std::chrono::time_point<std::chrono::system_clock, Duration> val,
FormatContext& ctx) const -> decltype(ctx.out()) {
using period = typename Duration::period;
if (period::num != 1 || period::den != 1 ||
std::is_floating_point<typename Duration::rep>::value) {
if (detail::const_check(
period::num != 1 || period::den != 1 ||
std::is_floating_point<typename Duration::rep>::value)) {
const auto epoch = val.time_since_epoch();
auto subsecs = std::chrono::duration_cast<Duration>(
epoch - std::chrono::duration_cast<std::chrono::seconds>(epoch));
if (subsecs.count() < 0) {
auto second = std::chrono::seconds(1);
auto second =
std::chrono::duration_cast<Duration>(std::chrono::seconds(1));
if (epoch.count() < ((Duration::min)() + second).count())
FMT_THROW(format_error("duration is too small"));
subsecs += second;
@ -2164,7 +2110,7 @@ template <typename Char, typename Duration>
struct formatter<std::chrono::local_time<Duration>, Char>
: formatter<std::tm, Char> {
FMT_CONSTEXPR formatter() {
this->format_str = detail::string_literal<Char, '%', 'F', ' ', '%', 'T'>{};
this->format_str_ = detail::string_literal<Char, '%', 'F', ' ', '%', 'T'>{};
}
template <typename FormatContext>
@ -2207,51 +2153,46 @@ struct formatter<std::chrono::time_point<std::chrono::utc_clock, Duration>,
template <typename Char> struct formatter<std::tm, Char> {
private:
format_specs<Char> specs;
detail::arg_ref<Char> width_ref;
format_specs<Char> specs_;
detail::arg_ref<Char> width_ref_;
protected:
basic_string_view<Char> format_str;
FMT_CONSTEXPR auto do_parse(basic_format_parse_context<Char>& ctx)
-> decltype(ctx.begin()) {
auto begin = ctx.begin(), end = ctx.end();
if (begin == end || *begin == '}') return begin;
begin = detail::parse_align(begin, end, specs);
if (begin == end) return end;
begin = detail::parse_dynamic_spec(begin, end, specs.width, width_ref, ctx);
if (begin == end) return end;
end = detail::parse_chrono_format(begin, end, detail::tm_format_checker());
// Replace default format_str only if the new spec is not empty.
if (end != begin) format_str = {begin, detail::to_unsigned(end - begin)};
return end;
}
basic_string_view<Char> format_str_;
template <typename FormatContext, typename Duration>
auto do_format(const std::tm& tm, FormatContext& ctx,
const Duration* subsecs) const -> decltype(ctx.out()) {
auto specs_copy = specs;
basic_memory_buffer<Char> buf;
auto specs = specs_;
auto buf = basic_memory_buffer<Char>();
auto out = std::back_inserter(buf);
detail::handle_dynamic_spec<detail::width_checker>(specs_copy.width,
width_ref, ctx);
detail::handle_dynamic_spec<detail::width_checker>(specs.width, width_ref_,
ctx);
const auto loc_ref = ctx.locale();
auto loc_ref = ctx.locale();
detail::get_locale loc(static_cast<bool>(loc_ref), loc_ref);
auto w =
detail::tm_writer<decltype(out), Char, Duration>(loc, out, tm, subsecs);
detail::parse_chrono_format(format_str.begin(), format_str.end(), w);
detail::parse_chrono_format(format_str_.begin(), format_str_.end(), w);
return detail::write(
ctx.out(), basic_string_view<Char>(buf.data(), buf.size()), specs_copy);
ctx.out(), basic_string_view<Char>(buf.data(), buf.size()), specs);
}
public:
FMT_CONSTEXPR auto parse(basic_format_parse_context<Char>& ctx)
-> decltype(ctx.begin()) {
return this->do_parse(ctx);
auto it = ctx.begin(), end = ctx.end();
if (it == end || *it == '}') return it;
it = detail::parse_align(it, end, specs_);
if (it == end) return it;
it = detail::parse_dynamic_spec(it, end, specs_.width, width_ref_, ctx);
if (it == end) return it;
end = detail::parse_chrono_format(it, end, detail::tm_format_checker());
// Replace the default format_str only if the new spec is not empty.
if (end != it) format_str_ = {it, detail::to_unsigned(end - it)};
return end;
}
template <typename FormatContext>

@ -203,7 +203,7 @@ struct rgb {
uint8_t b;
};
FMT_BEGIN_DETAIL_NAMESPACE
namespace detail {
// color is a struct of either a rgb color or a terminal color.
struct color_type {
@ -225,8 +225,7 @@ struct color_type {
uint32_t rgb_color;
} value;
};
FMT_END_DETAIL_NAMESPACE
} // namespace detail
/** A text style consisting of foreground and background colors and emphasis. */
class text_style {
@ -323,7 +322,7 @@ FMT_CONSTEXPR inline text_style operator|(emphasis lhs, emphasis rhs) noexcept {
return text_style(lhs) | rhs;
}
FMT_BEGIN_DETAIL_NAMESPACE
namespace detail {
template <typename Char> struct ansi_color_escape {
FMT_CONSTEXPR ansi_color_escape(detail::color_type text_color,
@ -457,7 +456,7 @@ void vformat_to(buffer<Char>& buf, const text_style& ts,
if (has_style) detail::reset_color<Char>(buf);
}
FMT_END_DETAIL_NAMESPACE
} // namespace detail
inline void vprint(std::FILE* f, const text_style& ts, string_view fmt,
format_args args) {

@ -19,84 +19,6 @@ FMT_CONSTEXPR inline counting_iterator copy_str(InputIt begin, InputIt end,
return it + (end - begin);
}
template <typename OutputIt> class truncating_iterator_base {
protected:
OutputIt out_;
size_t limit_;
size_t count_ = 0;
truncating_iterator_base() : out_(), limit_(0) {}
truncating_iterator_base(OutputIt out, size_t limit)
: out_(out), limit_(limit) {}
public:
using iterator_category = std::output_iterator_tag;
using value_type = typename std::iterator_traits<OutputIt>::value_type;
using difference_type = std::ptrdiff_t;
using pointer = void;
using reference = void;
FMT_UNCHECKED_ITERATOR(truncating_iterator_base);
OutputIt base() const { return out_; }
size_t count() const { return count_; }
};
// An output iterator that truncates the output and counts the number of objects
// written to it.
template <typename OutputIt,
typename Enable = typename std::is_void<
typename std::iterator_traits<OutputIt>::value_type>::type>
class truncating_iterator;
template <typename OutputIt>
class truncating_iterator<OutputIt, std::false_type>
: public truncating_iterator_base<OutputIt> {
mutable typename truncating_iterator_base<OutputIt>::value_type blackhole_;
public:
using value_type = typename truncating_iterator_base<OutputIt>::value_type;
truncating_iterator() = default;
truncating_iterator(OutputIt out, size_t limit)
: truncating_iterator_base<OutputIt>(out, limit) {}
truncating_iterator& operator++() {
if (this->count_++ < this->limit_) ++this->out_;
return *this;
}
truncating_iterator operator++(int) {
auto it = *this;
++*this;
return it;
}
value_type& operator*() const {
return this->count_ < this->limit_ ? *this->out_ : blackhole_;
}
};
template <typename OutputIt>
class truncating_iterator<OutputIt, std::true_type>
: public truncating_iterator_base<OutputIt> {
public:
truncating_iterator() = default;
truncating_iterator(OutputIt out, size_t limit)
: truncating_iterator_base<OutputIt>(out, limit) {}
template <typename T> truncating_iterator& operator=(T val) {
if (this->count_++ < this->limit_) *this->out_++ = val;
return *this;
}
truncating_iterator& operator++() { return *this; }
truncating_iterator& operator++(int) { return *this; }
truncating_iterator& operator*() { return *this; }
};
// A compile-time string which is compiled into fast formatting code.
class compiled_string {};
@ -196,7 +118,8 @@ template <typename Char> struct code_unit {
template <typename OutputIt, typename... Args>
constexpr OutputIt format(OutputIt out, const Args&...) const {
return write<Char>(out, value);
*out++ = value;
return out;
}
};
@ -220,7 +143,12 @@ template <typename Char, typename T, int N> struct field {
template <typename OutputIt, typename... Args>
constexpr OutputIt format(OutputIt out, const Args&... args) const {
return write<Char>(out, get_arg_checked<T, N>(args...));
const T& arg = get_arg_checked<T, N>(args...);
if constexpr (std::is_convertible_v<T, basic_string_view<Char>>) {
auto s = basic_string_view<Char>(arg);
return copy_str<Char>(s.begin(), s.end(), out);
}
return write<Char>(out, arg);
}
};
@ -448,20 +376,18 @@ constexpr auto compile_format_string(S format_str) {
} else if constexpr (arg_id_result.arg_id.kind == arg_id_kind::name) {
constexpr auto arg_index =
get_arg_index_by_name(arg_id_result.arg_id.val.name, Args{});
if constexpr (arg_index != invalid_arg_index) {
if constexpr (arg_index >= 0) {
constexpr auto next_id =
ID != manual_indexing_id ? ID + 1 : manual_indexing_id;
return parse_replacement_field_then_tail<
decltype(get_type<arg_index, Args>::value), Args, arg_id_end_pos,
arg_index, next_id>(format_str);
} else {
if constexpr (c == '}') {
return parse_tail<Args, arg_id_end_pos + 1, ID>(
runtime_named_field<char_type>{arg_id_result.arg_id.val.name},
format_str);
} else if constexpr (c == ':') {
return unknown_format(); // no type info for specs parsing
}
} else if constexpr (c == '}') {
return parse_tail<Args, arg_id_end_pos + 1, ID>(
runtime_named_field<char_type>{arg_id_result.arg_id.val.name},
format_str);
} else if constexpr (c == ':') {
return unknown_format(); // no type info for specs parsing
}
}
}
@ -564,9 +490,10 @@ template <typename OutputIt, typename S, typename... Args,
FMT_ENABLE_IF(detail::is_compiled_string<S>::value)>
format_to_n_result<OutputIt> format_to_n(OutputIt out, size_t n,
const S& format_str, Args&&... args) {
auto it = fmt::format_to(detail::truncating_iterator<OutputIt>(out, n),
format_str, std::forward<Args>(args)...);
return {it.base(), it.count()};
using traits = detail::fixed_buffer_traits;
auto buf = detail::iterator_buffer<OutputIt, char, traits>(out, n);
format_to(std::back_inserter(buf), format_str, std::forward<Args>(args)...);
return {buf.out(), buf.count()};
}
template <typename S, typename... Args,

@ -13,11 +13,12 @@
#include <cstring> // std::strlen
#include <iterator>
#include <limits>
#include <memory> // std::addressof
#include <string>
#include <type_traits>
// The fmt library version in the form major * 10000 + minor * 100 + patch.
#define FMT_VERSION 100000
#define FMT_VERSION 100101
#if defined(__clang__) && !defined(__ibmxl__)
# define FMT_CLANG_VERSION (__clang_major__ * 100 + __clang_minor__)
@ -92,7 +93,7 @@
#ifndef FMT_USE_CONSTEXPR
# if (FMT_HAS_FEATURE(cxx_relaxed_constexpr) || FMT_MSC_VERSION >= 1912 || \
(FMT_GCC_VERSION >= 600 && FMT_CPLUSPLUS >= 201402L)) && \
!FMT_ICC_VERSION && !defined(__NVCC__)
!FMT_ICC_VERSION && (!defined(__NVCC__) || FMT_CPLUSPLUS >= 202002L)
# define FMT_USE_CONSTEXPR 1
# else
# define FMT_USE_CONSTEXPR 0
@ -162,9 +163,6 @@
# endif
#endif
// An inline std::forward replacement.
#define FMT_FORWARD(...) static_cast<decltype(__VA_ARGS__)&&>(__VA_ARGS__)
#ifdef _MSC_VER
# define FMT_UNCHECKED_ITERATOR(It) \
using _Unchecked_type = It // Mark iterator as checked.
@ -181,8 +179,8 @@
}
#endif
#ifndef FMT_MODULE_EXPORT
# define FMT_MODULE_EXPORT
#ifndef FMT_EXPORT
# define FMT_EXPORT
# define FMT_BEGIN_EXPORT
# define FMT_END_EXPORT
#endif
@ -244,12 +242,6 @@
# endif
#endif
#if defined __cpp_inline_variables && __cpp_inline_variables >= 201606L
# define FMT_INLINE_VARIABLE inline
#else
# define FMT_INLINE_VARIABLE
#endif
// Enable minimal optimizations for more compact code in debug mode.
FMT_GCC_PRAGMA("GCC push_options")
#if !defined(__OPTIMIZE__) && !defined(__NVCOMPILER) && !defined(__LCC__) && \
@ -276,6 +268,11 @@ template <typename T> using type_identity_t = typename type_identity<T>::type;
template <typename T>
using underlying_t = typename std::underlying_type<T>::type;
// Checks whether T is a container with contiguous storage.
template <typename T> struct is_contiguous : std::false_type {};
template <typename Char>
struct is_contiguous<std::basic_string<Char>> : std::true_type {};
struct monostate {
constexpr monostate() {}
};
@ -289,8 +286,11 @@ struct monostate {
# define FMT_ENABLE_IF(...) fmt::enable_if_t<(__VA_ARGS__), int> = 0
#endif
// This is defined in core.h instead of format.h to avoid injecting in std.
// It is a template to avoid undesirable implicit conversions to std::byte.
#ifdef __cpp_lib_byte
inline auto format_as(std::byte b) -> unsigned char {
template <typename T, FMT_ENABLE_IF(std::is_same<T, std::byte>::value)>
inline auto format_as(T b) -> unsigned char {
return static_cast<unsigned char>(b);
}
#endif
@ -394,7 +394,7 @@ FMT_CONSTEXPR inline auto is_utf8() -> bool {
compiled with a different ``-std`` option than the client code (which is not
recommended).
*/
FMT_MODULE_EXPORT
FMT_EXPORT
template <typename Char> class basic_string_view {
private:
const Char* data_;
@ -497,11 +497,11 @@ template <typename Char> class basic_string_view {
}
};
FMT_MODULE_EXPORT
FMT_EXPORT
using string_view = basic_string_view<char>;
/** Specifies if ``T`` is a character type. Can be specialized by users. */
FMT_MODULE_EXPORT
FMT_EXPORT
template <typename T> struct is_char : std::false_type {};
template <> struct is_char<char> : std::true_type {};
@ -639,6 +639,9 @@ struct error_handler {
};
} // namespace detail
/** Throws ``format_error`` with a given message. */
using detail::throw_format_error;
/** String's character type. */
template <typename S> using char_t = typename detail::char_t_impl<S>::type;
@ -649,7 +652,7 @@ template <typename S> using char_t = typename detail::char_t_impl<S>::type;
You can use the ``format_parse_context`` type alias for ``char`` instead.
\endrst
*/
FMT_MODULE_EXPORT
FMT_EXPORT
template <typename Char> class basic_format_parse_context {
private:
basic_string_view<Char> format_str_;
@ -715,7 +718,7 @@ template <typename Char> class basic_format_parse_context {
FMT_CONSTEXPR void check_dynamic_spec(int arg_id);
};
FMT_MODULE_EXPORT
FMT_EXPORT
using format_parse_context = basic_format_parse_context<char>;
namespace detail {
@ -756,72 +759,6 @@ class compile_parse_context : public basic_format_parse_context<Char> {
#endif
}
};
} // namespace detail
template <typename Char>
FMT_CONSTEXPR void basic_format_parse_context<Char>::do_check_arg_id(int id) {
// Argument id is only checked at compile-time during parsing because
// formatting has its own validation.
if (detail::is_constant_evaluated() &&
(!FMT_GCC_VERSION || FMT_GCC_VERSION >= 1200)) {
using context = detail::compile_parse_context<Char>;
if (id >= static_cast<context*>(this)->num_args())
detail::throw_format_error("argument not found");
}
}
template <typename Char>
FMT_CONSTEXPR void basic_format_parse_context<Char>::check_dynamic_spec(
int arg_id) {
if (detail::is_constant_evaluated() &&
(!FMT_GCC_VERSION || FMT_GCC_VERSION >= 1200)) {
using context = detail::compile_parse_context<Char>;
static_cast<context*>(this)->check_dynamic_spec(arg_id);
}
}
FMT_MODULE_EXPORT template <typename Context> class basic_format_arg;
FMT_MODULE_EXPORT template <typename Context> class basic_format_args;
FMT_MODULE_EXPORT template <typename Context> class dynamic_format_arg_store;
// A formatter for objects of type T.
FMT_MODULE_EXPORT
template <typename T, typename Char = char, typename Enable = void>
struct formatter {
// A deleted default constructor indicates a disabled formatter.
formatter() = delete;
};
// Specifies if T has an enabled formatter specialization. A type can be
// formattable even if it doesn't have a formatter e.g. via a conversion.
template <typename T, typename Context>
using has_formatter =
std::is_constructible<typename Context::template formatter_type<T>>;
// Checks whether T is a container with contiguous storage.
template <typename T> struct is_contiguous : std::false_type {};
template <typename Char>
struct is_contiguous<std::basic_string<Char>> : std::true_type {};
class appender;
namespace detail {
template <typename Context, typename T>
constexpr auto has_const_formatter_impl(T*)
-> decltype(typename Context::template formatter_type<T>().format(
std::declval<const T&>(), std::declval<Context&>()),
true) {
return true;
}
template <typename Context>
constexpr auto has_const_formatter_impl(...) -> bool {
return false;
}
template <typename T, typename Context>
constexpr auto has_const_formatter() -> bool {
return has_const_formatter_impl<Context>(static_cast<T*>(nullptr));
}
// Extracts a reference to the container from back_insert_iterator.
template <typename Container>
@ -903,10 +840,8 @@ template <typename T> class buffer {
/** Returns the capacity of this buffer. */
constexpr auto capacity() const noexcept -> size_t { return capacity_; }
/** Returns a pointer to the buffer data. */
/** Returns a pointer to the buffer data (not null-terminated). */
FMT_CONSTEXPR auto data() noexcept -> T* { return ptr_; }
/** Returns a pointer to the buffer data. */
FMT_CONSTEXPR auto data() const noexcept -> const T* { return ptr_; }
/** Clears this buffer. */
@ -1099,6 +1034,79 @@ template <typename T = char> class counting_buffer final : public buffer<T> {
auto count() -> size_t { return count_ + this->size(); }
};
} // namespace detail
template <typename Char>
FMT_CONSTEXPR void basic_format_parse_context<Char>::do_check_arg_id(int id) {
// Argument id is only checked at compile-time during parsing because
// formatting has its own validation.
if (detail::is_constant_evaluated() &&
(!FMT_GCC_VERSION || FMT_GCC_VERSION >= 1200)) {
using context = detail::compile_parse_context<Char>;
if (id >= static_cast<context*>(this)->num_args())
detail::throw_format_error("argument not found");
}
}
template <typename Char>
FMT_CONSTEXPR void basic_format_parse_context<Char>::check_dynamic_spec(
int arg_id) {
if (detail::is_constant_evaluated() &&
(!FMT_GCC_VERSION || FMT_GCC_VERSION >= 1200)) {
using context = detail::compile_parse_context<Char>;
static_cast<context*>(this)->check_dynamic_spec(arg_id);
}
}
FMT_EXPORT template <typename Context> class basic_format_arg;
FMT_EXPORT template <typename Context> class basic_format_args;
FMT_EXPORT template <typename Context> class dynamic_format_arg_store;
// A formatter for objects of type T.
FMT_EXPORT
template <typename T, typename Char = char, typename Enable = void>
struct formatter {
// A deleted default constructor indicates a disabled formatter.
formatter() = delete;
};
// Specifies if T has an enabled formatter specialization. A type can be
// formattable even if it doesn't have a formatter e.g. via a conversion.
template <typename T, typename Context>
using has_formatter =
std::is_constructible<typename Context::template formatter_type<T>>;
// An output iterator that appends to a buffer.
// It is used to reduce symbol sizes for the common case.
class appender : public std::back_insert_iterator<detail::buffer<char>> {
using base = std::back_insert_iterator<detail::buffer<char>>;
public:
using std::back_insert_iterator<detail::buffer<char>>::back_insert_iterator;
appender(base it) noexcept : base(it) {}
FMT_UNCHECKED_ITERATOR(appender);
auto operator++() noexcept -> appender& { return *this; }
auto operator++(int) noexcept -> appender { return *this; }
};
namespace detail {
template <typename Context, typename T>
constexpr auto has_const_formatter_impl(T*)
-> decltype(typename Context::template formatter_type<T>().format(
std::declval<const T&>(), std::declval<Context&>()),
true) {
return true;
}
template <typename Context>
constexpr auto has_const_formatter_impl(...) -> bool {
return false;
}
template <typename T, typename Context>
constexpr auto has_const_formatter() -> bool {
return has_const_formatter_impl<Context>(static_cast<T*>(nullptr));
}
template <typename T>
using buffer_appender = conditional_t<std::is_same<T, char>::value, appender,
@ -1274,9 +1282,9 @@ template <typename Context> class value {
FMT_INLINE value(const named_arg_info<char_type>* args, size_t size)
: named_args{args, size} {}
template <typename T> FMT_CONSTEXPR FMT_INLINE value(T& val) {
using value_type = remove_cvref_t<T>;
custom.value = const_cast<value_type*>(&val);
template <typename T> FMT_CONSTEXPR20 FMT_INLINE value(T& val) {
using value_type = remove_const_t<T>;
custom.value = const_cast<value_type*>(std::addressof(val));
// Get the formatter type through the context to allow different contexts
// have different extension points, e.g. `formatter<T>` for `format` and
// `printf_formatter<T>` for `printf`.
@ -1301,9 +1309,6 @@ template <typename Context> class value {
}
};
template <typename Context, typename T>
FMT_CONSTEXPR auto make_arg(T&& value) -> basic_format_arg<Context>;
// To minimize the number of types we need to deal with, long is translated
// either to int or to long long depending on its size.
enum { long_short = sizeof(long) == sizeof(int) };
@ -1415,9 +1420,8 @@ template <typename Context> struct arg_mapper {
FMT_ENABLE_IF(
std::is_pointer<T>::value || std::is_member_pointer<T>::value ||
std::is_function<typename std::remove_pointer<T>::type>::value ||
(std::is_convertible<const T&, const void*>::value &&
!std::is_convertible<const T&, const char_type*>::value &&
!has_formatter<T, Context>::value))>
(std::is_array<T>::value &&
!std::is_convertible<T, const char_type*>::value))>
FMT_CONSTEXPR auto map(const T&) -> unformattable_pointer {
return {};
}
@ -1435,30 +1439,28 @@ template <typename Context> struct arg_mapper {
return map(format_as(val));
}
template <typename T, typename U = remove_cvref_t<T>>
struct formattable
: bool_constant<has_const_formatter<U, Context>() ||
(has_formatter<U, Context>::value &&
!std::is_const<remove_reference_t<T>>::value)> {};
template <typename T, typename U = remove_const_t<T>>
struct formattable : bool_constant<has_const_formatter<U, Context>() ||
(has_formatter<U, Context>::value &&
!std::is_const<T>::value)> {};
template <typename T, FMT_ENABLE_IF(formattable<T>::value)>
FMT_CONSTEXPR FMT_INLINE auto do_map(T&& val) -> T& {
FMT_CONSTEXPR FMT_INLINE auto do_map(T& val) -> T& {
return val;
}
template <typename T, FMT_ENABLE_IF(!formattable<T>::value)>
FMT_CONSTEXPR FMT_INLINE auto do_map(T&&) -> unformattable {
FMT_CONSTEXPR FMT_INLINE auto do_map(T&) -> unformattable {
return {};
}
template <typename T, typename U = remove_cvref_t<T>,
template <typename T, typename U = remove_const_t<T>,
FMT_ENABLE_IF((std::is_class<U>::value || std::is_enum<U>::value ||
std::is_union<U>::value) &&
!is_string<U>::value && !is_char<U>::value &&
!is_named_arg<U>::value &&
!std::is_arithmetic<format_as_t<U>>::value)>
FMT_CONSTEXPR FMT_INLINE auto map(T&& val)
-> decltype(this->do_map(std::forward<T>(val))) {
return do_map(std::forward<T>(val));
FMT_CONSTEXPR FMT_INLINE auto map(T& val) -> decltype(this->do_map(val)) {
return do_map(val);
}
template <typename T, FMT_ENABLE_IF(is_named_arg<T>::value)>
@ -1481,22 +1483,121 @@ enum { packed_arg_bits = 4 };
enum { max_packed_args = 62 / packed_arg_bits };
enum : unsigned long long { is_unpacked_bit = 1ULL << 63 };
enum : unsigned long long { has_named_args_bit = 1ULL << 62 };
} // namespace detail
// An output iterator that appends to a buffer.
// It is used to reduce symbol sizes for the common case.
class appender : public std::back_insert_iterator<detail::buffer<char>> {
using base = std::back_insert_iterator<detail::buffer<char>>;
template <typename Char, typename InputIt>
auto copy_str(InputIt begin, InputIt end, appender out) -> appender {
get_container(out).append(begin, end);
return out;
}
template <typename Char, typename InputIt>
auto copy_str(InputIt begin, InputIt end,
std::back_insert_iterator<std::string> out)
-> std::back_insert_iterator<std::string> {
get_container(out).append(begin, end);
return out;
}
template <typename Char, typename R, typename OutputIt>
FMT_CONSTEXPR auto copy_str(R&& rng, OutputIt out) -> OutputIt {
return detail::copy_str<Char>(rng.begin(), rng.end(), out);
}
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 500
// A workaround for gcc 4.8 to make void_t work in a SFINAE context.
template <typename...> struct void_t_impl { using type = void; };
template <typename... T> using void_t = typename void_t_impl<T...>::type;
#else
template <typename...> using void_t = void;
#endif
template <typename It, typename T, typename Enable = void>
struct is_output_iterator : std::false_type {};
template <typename It, typename T>
struct is_output_iterator<
It, T,
void_t<typename std::iterator_traits<It>::iterator_category,
decltype(*std::declval<It>() = std::declval<T>())>>
: std::true_type {};
template <typename It> struct is_back_insert_iterator : std::false_type {};
template <typename Container>
struct is_back_insert_iterator<std::back_insert_iterator<Container>>
: std::true_type {};
// A type-erased reference to an std::locale to avoid a heavy <locale> include.
class locale_ref {
private:
const void* locale_; // A type-erased pointer to std::locale.
public:
using std::back_insert_iterator<detail::buffer<char>>::back_insert_iterator;
appender(base it) noexcept : base(it) {}
FMT_UNCHECKED_ITERATOR(appender);
constexpr FMT_INLINE locale_ref() : locale_(nullptr) {}
template <typename Locale> explicit locale_ref(const Locale& loc);
auto operator++() noexcept -> appender& { return *this; }
auto operator++(int) noexcept -> appender { return *this; }
explicit operator bool() const noexcept { return locale_ != nullptr; }
template <typename Locale> auto get() const -> Locale;
};
template <typename> constexpr auto encode_types() -> unsigned long long {
return 0;
}
template <typename Context, typename Arg, typename... Args>
constexpr auto encode_types() -> unsigned long long {
return static_cast<unsigned>(mapped_type_constant<Arg, Context>::value) |
(encode_types<Context, Args...>() << packed_arg_bits);
}
#if defined(__cpp_if_constexpr)
// This type is intentionally undefined, only used for errors
template <typename T, typename Char> struct type_is_unformattable_for;
#endif
template <bool PACKED, typename Context, typename T, FMT_ENABLE_IF(PACKED)>
FMT_CONSTEXPR FMT_INLINE auto make_arg(T& val) -> value<Context> {
using arg_type = remove_cvref_t<decltype(arg_mapper<Context>().map(val))>;
constexpr bool formattable_char =
!std::is_same<arg_type, unformattable_char>::value;
static_assert(formattable_char, "Mixing character types is disallowed.");
// Formatting of arbitrary pointers is disallowed. If you want to format a
// pointer cast it to `void*` or `const void*`. In particular, this forbids
// formatting of `[const] volatile char*` printed as bool by iostreams.
constexpr bool formattable_pointer =
!std::is_same<arg_type, unformattable_pointer>::value;
static_assert(formattable_pointer,
"Formatting of non-void pointers is disallowed.");
constexpr bool formattable = !std::is_same<arg_type, unformattable>::value;
#if defined(__cpp_if_constexpr)
if constexpr (!formattable) {
type_is_unformattable_for<T, typename Context::char_type> _;
}
#endif
static_assert(
formattable,
"Cannot format an argument. To make type T formattable provide a "
"formatter<T> specialization: https://fmt.dev/latest/api.html#udt");
return {arg_mapper<Context>().map(val)};
}
template <typename Context, typename T>
FMT_CONSTEXPR auto make_arg(T& val) -> basic_format_arg<Context> {
auto arg = basic_format_arg<Context>();
arg.type_ = mapped_type_constant<T, Context>::value;
arg.value_ = make_arg<true, Context>(val);
return arg;
}
template <bool PACKED, typename Context, typename T, FMT_ENABLE_IF(!PACKED)>
FMT_CONSTEXPR inline auto make_arg(T& val) -> basic_format_arg<Context> {
return make_arg<Context>(val);
}
} // namespace detail
FMT_BEGIN_EXPORT
// A formatting argument. It is a trivially copyable/constructible type to
// allow storage in basic_memory_buffer.
template <typename Context> class basic_format_arg {
@ -1505,7 +1606,7 @@ template <typename Context> class basic_format_arg {
detail::type type_;
template <typename ContextType, typename T>
friend FMT_CONSTEXPR auto detail::make_arg(T&& value)
friend FMT_CONSTEXPR auto detail::make_arg(T& value)
-> basic_format_arg<ContextType>;
template <typename Visitor, typename Ctx>
@ -1559,7 +1660,7 @@ template <typename Context> class basic_format_arg {
``vis(value)`` will be called with the value of type ``double``.
\endrst
*/
FMT_MODULE_EXPORT
// DEPRECATED!
template <typename Visitor, typename Context>
FMT_CONSTEXPR FMT_INLINE auto visit_format_arg(
Visitor&& vis, const basic_format_arg<Context>& arg) -> decltype(vis(0)) {
@ -1601,124 +1702,6 @@ FMT_CONSTEXPR FMT_INLINE auto visit_format_arg(
return vis(monostate());
}
namespace detail {
template <typename Char, typename InputIt>
auto copy_str(InputIt begin, InputIt end, appender out) -> appender {
get_container(out).append(begin, end);
return out;
}
template <typename Char, typename R, typename OutputIt>
FMT_CONSTEXPR auto copy_str(R&& rng, OutputIt out) -> OutputIt {
return detail::copy_str<Char>(rng.begin(), rng.end(), out);
}
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 500
// A workaround for gcc 4.8 to make void_t work in a SFINAE context.
template <typename...> struct void_t_impl { using type = void; };
template <typename... T> using void_t = typename void_t_impl<T...>::type;
#else
template <typename...> using void_t = void;
#endif
template <typename It, typename T, typename Enable = void>
struct is_output_iterator : std::false_type {};
template <typename It, typename T>
struct is_output_iterator<
It, T,
void_t<typename std::iterator_traits<It>::iterator_category,
decltype(*std::declval<It>() = std::declval<T>())>>
: std::true_type {};
template <typename It> struct is_back_insert_iterator : std::false_type {};
template <typename Container>
struct is_back_insert_iterator<std::back_insert_iterator<Container>>
: std::true_type {};
template <typename It>
struct is_contiguous_back_insert_iterator : std::false_type {};
template <typename Container>
struct is_contiguous_back_insert_iterator<std::back_insert_iterator<Container>>
: is_contiguous<Container> {};
template <>
struct is_contiguous_back_insert_iterator<appender> : std::true_type {};
// A type-erased reference to an std::locale to avoid a heavy <locale> include.
class locale_ref {
private:
const void* locale_; // A type-erased pointer to std::locale.
public:
constexpr FMT_INLINE locale_ref() : locale_(nullptr) {}
template <typename Locale> explicit locale_ref(const Locale& loc);
explicit operator bool() const noexcept { return locale_ != nullptr; }
template <typename Locale> auto get() const -> Locale;
};
template <typename> constexpr auto encode_types() -> unsigned long long {
return 0;
}
template <typename Context, typename Arg, typename... Args>
constexpr auto encode_types() -> unsigned long long {
return static_cast<unsigned>(mapped_type_constant<Arg, Context>::value) |
(encode_types<Context, Args...>() << packed_arg_bits);
}
template <typename Context, typename T>
FMT_CONSTEXPR FMT_INLINE auto make_value(T&& val) -> value<Context> {
auto&& arg = arg_mapper<Context>().map(FMT_FORWARD(val));
using arg_type = remove_cvref_t<decltype(arg)>;
constexpr bool formattable_char =
!std::is_same<arg_type, unformattable_char>::value;
static_assert(formattable_char, "Mixing character types is disallowed.");
// Formatting of arbitrary pointers is disallowed. If you want to format a
// pointer cast it to `void*` or `const void*`. In particular, this forbids
// formatting of `[const] volatile char*` printed as bool by iostreams.
constexpr bool formattable_pointer =
!std::is_same<arg_type, unformattable_pointer>::value;
static_assert(formattable_pointer,
"Formatting of non-void pointers is disallowed.");
constexpr bool formattable = !std::is_same<arg_type, unformattable>::value;
static_assert(
formattable,
"Cannot format an argument. To make type T formattable provide a "
"formatter<T> specialization: https://fmt.dev/latest/api.html#udt");
return {arg};
}
template <typename Context, typename T>
FMT_CONSTEXPR auto make_arg(T&& value) -> basic_format_arg<Context> {
auto arg = basic_format_arg<Context>();
arg.type_ = mapped_type_constant<T, Context>::value;
arg.value_ = make_value<Context>(value);
return arg;
}
// The DEPRECATED type template parameter is there to avoid an ODR violation
// when using a fallback formatter in one translation unit and an implicit
// conversion in another (not recommended).
template <bool IS_PACKED, typename Context, type, typename T,
FMT_ENABLE_IF(IS_PACKED)>
FMT_CONSTEXPR FMT_INLINE auto make_arg(T&& val) -> value<Context> {
return make_value<Context>(val);
}
template <bool IS_PACKED, typename Context, type, typename T,
FMT_ENABLE_IF(!IS_PACKED)>
FMT_CONSTEXPR inline auto make_arg(T&& value) -> basic_format_arg<Context> {
return make_arg<Context>(value);
}
} // namespace detail
FMT_BEGIN_EXPORT
// Formatting context.
template <typename OutputIt, typename Char> class basic_format_context {
private:
@ -1778,7 +1761,7 @@ using format_context = buffer_context<char>;
template <typename T, typename Char = char>
using is_formattable = bool_constant<!std::is_base_of<
detail::unformattable, decltype(detail::arg_mapper<buffer_context<Char>>()
.map(std::declval<T>()))>::value>;
.map(std::declval<T&>()))>::value>;
/**
\rst
@ -1796,7 +1779,7 @@ class format_arg_store
{
private:
static const size_t num_args = sizeof...(Args);
static const size_t num_named_args = detail::count_named_args<Args...>();
static constexpr size_t num_named_args = detail::count_named_args<Args...>();
static const bool is_packed = num_args <= detail::max_packed_args;
using value_type = conditional_t<is_packed, detail::value<Context>,
@ -1817,16 +1800,14 @@ class format_arg_store
public:
template <typename... T>
FMT_CONSTEXPR FMT_INLINE format_arg_store(T&&... args)
FMT_CONSTEXPR FMT_INLINE format_arg_store(T&... args)
:
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
basic_format_args<Context>(*this),
#endif
data_{detail::make_arg<
is_packed, Context,
detail::mapped_type_constant<remove_cvref_t<T>, Context>::value>(
FMT_FORWARD(args))...} {
detail::init_named_args(data_.named_args(), 0, 0, args...);
data_{detail::make_arg<is_packed, Context>(args)...} {
if (detail::const_check(num_named_args != 0))
detail::init_named_args(data_.named_args(), 0, 0, args...);
}
};
@ -1834,14 +1815,15 @@ class format_arg_store
\rst
Constructs a `~fmt::format_arg_store` object that contains references to
arguments and can be implicitly converted to `~fmt::format_args`. `Context`
can be omitted in which case it defaults to `~fmt::context`.
can be omitted in which case it defaults to `~fmt::format_context`.
See `~fmt::arg` for lifetime considerations.
\endrst
*/
// Arguments are taken by lvalue references to avoid some lifetime issues.
template <typename Context = format_context, typename... T>
constexpr auto make_format_args(T&&... args)
constexpr auto make_format_args(T&... args)
-> format_arg_store<Context, remove_cvref_t<T>...> {
return {FMT_FORWARD(args)...};
return {args...};
}
/**
@ -1869,7 +1851,7 @@ FMT_END_EXPORT
``vformat``::
void vlog(string_view format_str, format_args args); // OK
format_args args = make_format_args(42); // Error: dangling reference
format_args args = make_format_args(); // Error: dangling reference
\endrst
*/
template <typename Context> class basic_format_args {
@ -1986,7 +1968,7 @@ template <typename Context> class basic_format_args {
/** An alias to ``basic_format_args<format_context>``. */
// A separate type would result in shorter symbols but break ABI compatibility
// between clang and gcc on ARM (#1919).
FMT_MODULE_EXPORT using format_args = basic_format_args<format_context>;
FMT_EXPORT using format_args = basic_format_args<format_context>;
// We cannot use enum classes as bit fields because of a gcc bug, so we put them
// in namespaces instead (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61414).
@ -2558,7 +2540,17 @@ FMT_CONSTEXPR auto parse_format_specs(ParseContext& ctx)
mapped_type_constant<T, context>::value != type::custom_type,
decltype(arg_mapper<context>().map(std::declval<const T&>())),
typename strip_named_arg<T>::type>;
#if defined(__cpp_if_constexpr)
if constexpr (std::is_default_constructible_v<
formatter<mapped_type, char_type>>) {
return formatter<mapped_type, char_type>().parse(ctx);
} else {
type_is_unformattable_for<T, char_type> _;
return ctx.begin();
}
#else
return formatter<mapped_type, char_type>().parse(ctx);
#endif
}
// Checks char specs and returns true iff the presentation type is char-like.
@ -2574,8 +2566,6 @@ FMT_CONSTEXPR auto check_char_specs(const format_specs<Char>& specs) -> bool {
return true;
}
constexpr FMT_INLINE_VARIABLE int invalid_arg_index = -1;
#if FMT_USE_NONTYPE_TEMPLATE_ARGS
template <int N, typename T, typename... Args, typename Char>
constexpr auto get_arg_index_by_name(basic_string_view<Char> name) -> int {
@ -2585,7 +2575,7 @@ constexpr auto get_arg_index_by_name(basic_string_view<Char> name) -> int {
if constexpr (sizeof...(Args) > 0)
return get_arg_index_by_name<N + 1, Args...>(name);
(void)name; // Workaround an MSVC bug about "unused" parameter.
return invalid_arg_index;
return -1;
}
#endif
@ -2596,7 +2586,7 @@ FMT_CONSTEXPR auto get_arg_index_by_name(basic_string_view<Char> name) -> int {
return get_arg_index_by_name<0, Args...>(name);
#endif
(void)name;
return invalid_arg_index;
return -1;
}
template <typename Char, typename... Args> class format_string_checker {
@ -2610,15 +2600,15 @@ template <typename Char, typename... Args> class format_string_checker {
// needed for compile-time checks: https://godbolt.org/z/GvWzcTjh1.
using parse_func = const Char* (*)(parse_context_type&);
type types_[num_args > 0 ? static_cast<size_t>(num_args) : 1];
parse_context_type context_;
parse_func parse_funcs_[num_args > 0 ? static_cast<size_t>(num_args) : 1];
type types_[num_args > 0 ? static_cast<size_t>(num_args) : 1];
public:
explicit FMT_CONSTEXPR format_string_checker(basic_string_view<Char> fmt)
: context_(fmt, num_args, types_),
parse_funcs_{&parse_format_specs<Args, parse_context_type>...},
types_{mapped_type_constant<Args, buffer_context<Char>>::value...} {}
: types_{mapped_type_constant<Args, buffer_context<Char>>::value...},
context_(fmt, num_args, types_),
parse_funcs_{&parse_format_specs<Args, parse_context_type>...} {}
FMT_CONSTEXPR void on_text(const Char*, const Char*) {}
@ -2629,7 +2619,7 @@ template <typename Char, typename... Args> class format_string_checker {
FMT_CONSTEXPR auto on_arg_id(basic_string_view<Char> id) -> int {
#if FMT_USE_NONTYPE_TEMPLATE_ARGS
auto index = get_arg_index_by_name<Args...>(id);
if (index == invalid_arg_index) on_error("named argument is not found");
if (index < 0) on_error("named argument is not found");
return index;
#else
(void)id;
@ -2638,7 +2628,9 @@ template <typename Char, typename... Args> class format_string_checker {
#endif
}
FMT_CONSTEXPR void on_replacement_field(int, const Char*) {}
FMT_CONSTEXPR void on_replacement_field(int id, const Char* begin) {
on_format_specs(id, begin, begin); // Call parse() on empty specs.
}
FMT_CONSTEXPR auto on_format_specs(int id, const Char* begin, const Char*)
-> const Char* {
@ -2721,27 +2713,6 @@ struct formatter<T, Char,
-> decltype(ctx.out());
};
#define FMT_FORMAT_AS(Type, Base) \
template <typename Char> \
struct formatter<Type, Char> : formatter<Base, Char> { \
template <typename FormatContext> \
auto format(const Type& val, FormatContext& ctx) const \
-> decltype(ctx.out()) { \
return formatter<Base, Char>::format(static_cast<Base>(val), ctx); \
} \
}
FMT_FORMAT_AS(signed char, int);
FMT_FORMAT_AS(unsigned char, unsigned);
FMT_FORMAT_AS(short, int);
FMT_FORMAT_AS(unsigned short, unsigned);
FMT_FORMAT_AS(long, long long);
FMT_FORMAT_AS(unsigned long, unsigned long long);
FMT_FORMAT_AS(Char*, const Char*);
FMT_FORMAT_AS(std::basic_string<Char>, basic_string_view<Char>);
FMT_FORMAT_AS(std::nullptr_t, const void*);
FMT_FORMAT_AS(detail::std_string_view<Char>, basic_string_view<Char>);
template <typename Char = char> struct runtime_format_string {
basic_string_view<Char> str;
};

@ -1128,16 +1128,12 @@ bool is_left_endpoint_integer_shorter_interval(int exponent) noexcept {
}
// Remove trailing zeros from n and return the number of zeros removed (float)
FMT_INLINE int remove_trailing_zeros(uint32_t& n) noexcept {
FMT_INLINE int remove_trailing_zeros(uint32_t& n, int s = 0) noexcept {
FMT_ASSERT(n != 0, "");
// Modular inverse of 5 (mod 2^32): (mod_inv_5 * 5) mod 2^32 = 1.
// See https://github.com/fmtlib/fmt/issues/3163 for more details.
const uint32_t mod_inv_5 = 0xcccccccd;
// Casts are needed to workaround a bug in MSVC 19.22 and older.
const uint32_t mod_inv_25 =
static_cast<uint32_t>(uint64_t(mod_inv_5) * mod_inv_5);
constexpr uint32_t mod_inv_5 = 0xcccccccd;
constexpr uint32_t mod_inv_25 = 0xc28f5c29; // = mod_inv_5 * mod_inv_5
int s = 0;
while (true) {
auto q = rotr(n * mod_inv_25, 2);
if (q > max_value<uint32_t>() / 100) break;
@ -1162,32 +1158,17 @@ FMT_INLINE int remove_trailing_zeros(uint64_t& n) noexcept {
// Is n is divisible by 10^8?
if ((nm.high() & ((1ull << (90 - 64)) - 1)) == 0 && nm.low() < magic_number) {
// If yes, work with the quotient.
// If yes, work with the quotient...
auto n32 = static_cast<uint32_t>(nm.high() >> (90 - 64));
const uint32_t mod_inv_5 = 0xcccccccd;
const uint32_t mod_inv_25 = mod_inv_5 * mod_inv_5;
int s = 8;
while (true) {
auto q = rotr(n32 * mod_inv_25, 2);
if (q > max_value<uint32_t>() / 100) break;
n32 = q;
s += 2;
}
auto q = rotr(n32 * mod_inv_5, 1);
if (q <= max_value<uint32_t>() / 10) {
n32 = q;
s |= 1;
}
// ... and use the 32 bit variant of the function
int s = remove_trailing_zeros(n32, 8);
n = n32;
return s;
}
// If n is not divisible by 10^8, work with n itself.
const uint64_t mod_inv_5 = 0xcccccccccccccccd;
const uint64_t mod_inv_25 = mod_inv_5 * mod_inv_5;
constexpr uint64_t mod_inv_5 = 0xcccccccccccccccd;
constexpr uint64_t mod_inv_25 = 0x8f5c28f5c28f5c29; // = mod_inv_5 * mod_inv_5
int s = 0;
while (true) {
@ -1458,7 +1439,7 @@ FMT_FUNC bool write_console(std::FILE* f, string_view text) {
auto u16 = utf8_to_utf16(text);
auto written = dword();
return WriteConsoleW(reinterpret_cast<void*>(_get_osfhandle(fd)), u16.c_str(),
static_cast<uint32_t>(u16.size()), &written, nullptr);
static_cast<uint32_t>(u16.size()), &written, nullptr) != 0;
}
// Print assuming legacy (non-Unicode) encoding.

@ -48,9 +48,10 @@
#include "core.h"
#ifndef FMT_BEGIN_DETAIL_NAMESPACE
# define FMT_BEGIN_DETAIL_NAMESPACE namespace detail {
# define FMT_END_DETAIL_NAMESPACE }
#if defined __cpp_inline_variables && __cpp_inline_variables >= 201606L
# define FMT_INLINE_VARIABLE inline
#else
# define FMT_INLINE_VARIABLE
#endif
#if FMT_HAS_CPP17_ATTRIBUTE(fallthrough)
@ -78,16 +79,24 @@
# endif
#endif
#if FMT_GCC_VERSION
# define FMT_GCC_VISIBILITY_HIDDEN __attribute__((visibility("hidden")))
#else
# define FMT_GCC_VISIBILITY_HIDDEN
#ifndef FMT_NO_UNIQUE_ADDRESS
# if FMT_CPLUSPLUS >= 202002L
# if FMT_HAS_CPP_ATTRIBUTE(no_unique_address)
# define FMT_NO_UNIQUE_ADDRESS [[no_unique_address]]
// VS2019 v16.10 and later except clang-cl (https://reviews.llvm.org/D110485)
# elif (FMT_MSC_VERSION >= 1929) && !FMT_CLANG_VERSION
# define FMT_NO_UNIQUE_ADDRESS [[msvc::no_unique_address]]
# endif
# endif
#endif
#ifndef FMT_NO_UNIQUE_ADDRESS
# define FMT_NO_UNIQUE_ADDRESS
#endif
#ifdef __NVCC__
# define FMT_CUDA_VERSION (__CUDACC_VER_MAJOR__ * 100 + __CUDACC_VER_MINOR__)
#if FMT_GCC_VERSION || defined(__clang__)
# define FMT_VISIBILITY(value) __attribute__((visibility(value)))
#else
# define FMT_CUDA_VERSION 0
# define FMT_VISIBILITY(value)
#endif
#ifdef __has_builtin
@ -120,10 +129,8 @@ FMT_END_NAMESPACE
# define FMT_THROW(x) throw x
# endif
# else
# define FMT_THROW(x) \
do { \
FMT_ASSERT(false, (x).what()); \
} while (false)
# define FMT_THROW(x) \
::fmt::detail::assert_fail(__FILE__, __LINE__, (x).what())
# endif
#endif
@ -362,8 +369,6 @@ class uint128_fallback {
private:
uint64_t lo_, hi_;
friend uint128_fallback umul128(uint64_t x, uint64_t y) noexcept;
public:
constexpr uint128_fallback(uint64_t hi, uint64_t lo) : lo_(lo), hi_(hi) {}
constexpr uint128_fallback(uint64_t value = 0) : lo_(value), hi_(0) {}
@ -536,6 +541,8 @@ FMT_INLINE void assume(bool condition) {
(void)condition;
#if FMT_HAS_BUILTIN(__builtin_assume) && !FMT_ICC_VERSION
__builtin_assume(condition);
#elif FMT_GCC_VERSION
if (!condition) __builtin_unreachable();
#endif
}
@ -554,20 +561,6 @@ inline auto get_data(Container& c) -> typename Container::value_type* {
return c.data();
}
#if defined(_SECURE_SCL) && _SECURE_SCL
// Make a checked iterator to avoid MSVC warnings.
template <typename T> using checked_ptr = stdext::checked_array_iterator<T*>;
template <typename T>
constexpr auto make_checked(T* p, size_t size) -> checked_ptr<T> {
return {p, size};
}
#else
template <typename T> using checked_ptr = T*;
template <typename T> constexpr auto make_checked(T* p, size_t) -> T* {
return p;
}
#endif
// Attempts to reserve space for n extra characters in the output range.
// Returns a pointer to the reserved range or a reference to it.
template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)>
@ -575,12 +568,12 @@ template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)>
__attribute__((no_sanitize("undefined")))
#endif
inline auto
reserve(std::back_insert_iterator<Container> it, size_t n)
-> checked_ptr<typename Container::value_type> {
reserve(std::back_insert_iterator<Container> it, size_t n) ->
typename Container::value_type* {
Container& c = get_container(it);
size_t size = c.size();
c.resize(size + n);
return make_checked(get_data(c) + size, n);
return get_data(c) + size;
}
template <typename T>
@ -612,8 +605,8 @@ template <typename T> auto to_pointer(buffer_appender<T> it, size_t n) -> T* {
}
template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)>
inline auto base_iterator(std::back_insert_iterator<Container>& it,
checked_ptr<typename Container::value_type>)
inline auto base_iterator(std::back_insert_iterator<Container> it,
typename Container::value_type*)
-> std::back_insert_iterator<Container> {
return it;
}
@ -881,7 +874,7 @@ void buffer<T>::append(const U* begin, const U* end) {
try_reserve(size_ + count);
auto free_cap = capacity_ - size_;
if (free_cap < count) count = free_cap;
std::uninitialized_copy_n(begin, count, make_checked(ptr_ + size_, count));
std::uninitialized_copy_n(begin, count, ptr_ + size_);
size_ += count;
begin += count;
}
@ -926,8 +919,8 @@ class basic_memory_buffer final : public detail::buffer<T> {
private:
T store_[SIZE];
// Don't inherit from Allocator avoid generating type_info for it.
Allocator alloc_;
// Don't inherit from Allocator to avoid generating type_info for it.
FMT_NO_UNIQUE_ADDRESS Allocator alloc_;
// Deallocate memory allocated by the buffer.
FMT_CONSTEXPR20 void deallocate() {
@ -948,9 +941,10 @@ class basic_memory_buffer final : public detail::buffer<T> {
T* old_data = this->data();
T* new_data =
std::allocator_traits<Allocator>::allocate(alloc_, new_capacity);
// Suppress a bogus -Wstringop-overflow in gcc 13.1 (#3481).
detail::assume(this->size() <= new_capacity);
// The following code doesn't throw, so the raw pointer above doesn't leak.
std::uninitialized_copy(old_data, old_data + this->size(),
detail::make_checked(new_data, new_capacity));
std::uninitialized_copy_n(old_data, this->size(), new_data);
this->set(new_data, new_capacity);
// deallocate must not throw according to the standard, but even if it does,
// the buffer already uses the new storage and will deallocate it in
@ -978,8 +972,7 @@ class basic_memory_buffer final : public detail::buffer<T> {
size_t size = other.size(), capacity = other.capacity();
if (data == other.store_) {
this->set(store_, capacity);
detail::copy_str<T>(other.store_, other.store_ + size,
detail::make_checked(store_, capacity));
detail::copy_str<T>(other.store_, other.store_ + size, store_);
} else {
this->set(data, capacity);
// Set pointer to the inline array so that delete is not called
@ -1044,6 +1037,7 @@ namespace detail {
FMT_API bool write_console(std::FILE* f, string_view text);
FMT_API void print(std::FILE*, string_view);
} // namespace detail
FMT_BEGIN_EXPORT
// Suppress a misleading warning in older versions of clang.
@ -1052,7 +1046,7 @@ FMT_BEGIN_EXPORT
#endif
/** An error reported from a formatting function. */
class FMT_API format_error : public std::runtime_error {
class FMT_VISIBILITY("default") format_error : public std::runtime_error {
public:
using std::runtime_error::runtime_error;
};
@ -1128,7 +1122,7 @@ template <typename Locale> class format_facet : public Locale::facet {
}
};
FMT_BEGIN_DETAIL_NAMESPACE
namespace detail {
// Returns true if value is negative, false otherwise.
// Same as `value < 0` but doesn't produce warnings if T is an unsigned type.
@ -1257,7 +1251,7 @@ FMT_CONSTEXPR auto count_digits(UInt n) -> int {
FMT_INLINE auto do_count_digits(uint32_t n) -> int {
// An optimization by Kendall Willets from https://bit.ly/3uOIQrB.
// This increments the upper 32 bits (log10(T) - 1) when >= T is added.
# define FMT_INC(T) (((sizeof(# T) - 1ull) << 32) - T)
# define FMT_INC(T) (((sizeof(#T) - 1ull) << 32) - T)
static constexpr uint64_t table[] = {
FMT_INC(0), FMT_INC(0), FMT_INC(0), // 8
FMT_INC(10), FMT_INC(10), FMT_INC(10), // 64
@ -1393,8 +1387,8 @@ FMT_CONSTEXPR auto format_uint(Char* buffer, UInt value, int num_digits,
}
template <unsigned BASE_BITS, typename Char, typename It, typename UInt>
inline auto format_uint(It out, UInt value, int num_digits, bool upper = false)
-> It {
FMT_CONSTEXPR inline auto format_uint(It out, UInt value, int num_digits,
bool upper = false) -> It {
if (auto ptr = to_pointer<Char>(out, to_unsigned(num_digits))) {
format_uint<BASE_BITS>(ptr, value, num_digits, upper);
return out;
@ -1418,19 +1412,20 @@ class utf8_to_utf16 {
auto str() const -> std::wstring { return {&buffer_[0], size()}; }
};
enum class to_utf8_error_policy { abort, replace };
// A converter from UTF-16/UTF-32 (host endian) to UTF-8.
template <typename WChar, typename Buffer = memory_buffer>
class unicode_to_utf8 {
template <typename WChar, typename Buffer = memory_buffer> class to_utf8 {
private:
Buffer buffer_;
public:
unicode_to_utf8() {}
explicit unicode_to_utf8(basic_string_view<WChar> s) {
to_utf8() {}
explicit to_utf8(basic_string_view<WChar> s,
to_utf8_error_policy policy = to_utf8_error_policy::abort) {
static_assert(sizeof(WChar) == 2 || sizeof(WChar) == 4,
"Expect utf16 or utf32");
if (!convert(s))
if (!convert(s, policy))
FMT_THROW(std::runtime_error(sizeof(WChar) == 2 ? "invalid utf16"
: "invalid utf32"));
}
@ -1442,23 +1437,28 @@ class unicode_to_utf8 {
// Performs conversion returning a bool instead of throwing exception on
// conversion error. This method may still throw in case of memory allocation
// error.
bool convert(basic_string_view<WChar> s) {
if (!convert(buffer_, s)) return false;
bool convert(basic_string_view<WChar> s,
to_utf8_error_policy policy = to_utf8_error_policy::abort) {
if (!convert(buffer_, s, policy)) return false;
buffer_.push_back(0);
return true;
}
static bool convert(Buffer& buf, basic_string_view<WChar> s) {
static bool convert(
Buffer& buf, basic_string_view<WChar> s,
to_utf8_error_policy policy = to_utf8_error_policy::abort) {
for (auto p = s.begin(); p != s.end(); ++p) {
uint32_t c = static_cast<uint32_t>(*p);
if (sizeof(WChar) == 2 && c >= 0xd800 && c <= 0xdfff) {
// surrogate pair
// Handle a surrogate pair.
++p;
if (p == s.end() || (c & 0xfc00) != 0xd800 || (*p & 0xfc00) != 0xdc00) {
return false;
if (policy == to_utf8_error_policy::abort) return false;
buf.append(string_view("\xEF\xBF\xBD"));
--p;
} else {
c = (c << 10) + static_cast<uint32_t>(*p) - 0x35fdc00;
}
c = (c << 10) + static_cast<uint32_t>(*p) - 0x35fdc00;
}
if (c < 0x80) {
} else if (c < 0x80) {
buf.push_back(static_cast<char>(c));
} else if (c < 0x800) {
buf.push_back(static_cast<char>(0xc0 | (c >> 6)));
@ -1486,9 +1486,9 @@ inline uint128_fallback umul128(uint64_t x, uint64_t y) noexcept {
auto p = static_cast<uint128_opt>(x) * static_cast<uint128_opt>(y);
return {static_cast<uint64_t>(p >> 64), static_cast<uint64_t>(p)};
#elif defined(_MSC_VER) && defined(_M_X64)
auto result = uint128_fallback();
result.lo_ = _umul128(x, y, &result.hi_);
return result;
auto hi = uint64_t();
auto lo = _umul128(x, y, &hi);
return {hi, lo};
#else
const uint64_t mask = static_cast<uint64_t>(max_value<uint32_t>());
@ -1737,119 +1737,31 @@ FMT_CONSTEXPR inline fp operator*(fp x, fp y) {
}
template <typename T = void> struct basic_data {
// Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340.
// These are generated by support/compute-powers.py.
static constexpr uint64_t pow10_significands[87] = {
0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76,
0xcf42894a5dce35ea, 0x9a6bb0aa55653b2d, 0xe61acf033d1a45df,
0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c,
0x8dd01fad907ffc3c, 0xd3515c2831559a83, 0x9d71ac8fada6c9b5,
0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57,
0xc21094364dfb5637, 0x9096ea6f3848984f, 0xd77485cb25823ac7,
0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e,
0x84c8d4dfd2c63f3b, 0xc5dd44271ad3cdba, 0x936b9fcebb25c996,
0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126,
0xb5b5ada8aaff80b8, 0x87625f056c7c4a8b, 0xc9bcff6034c13053,
0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f,
0xf8a95fcf88747d94, 0xb94470938fa89bcf, 0x8a08f0f8bf0f156b,
0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06,
0xaa242499697392d3, 0xfd87b5f28300ca0e, 0xbce5086492111aeb,
0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000,
0xe8d4a51000000000, 0xad78ebc5ac620000, 0x813f3978f8940984,
0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068,
0x9f4f2726179a2245, 0xed63a231d4c4fb27, 0xb0de65388cc8ada8,
0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758,
0xda01ee641a708dea, 0xa26da3999aef774a, 0xf209787bb47d6b85,
0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d,
0x952ab45cfa97a0b3, 0xde469fbd99a05fe3, 0xa59bc234db398c25,
0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2,
0xcc20ce9bd35c78a5, 0x98165af37b2153df, 0xe2a0b5dc971f303a,
0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410,
0x8bab8eefb6409c1a, 0xd01fef10a657842c, 0x9b10a4e5e9913129,
0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85,
0xbf21e44003acdd2d, 0x8e679c2f5e44ff8f, 0xd433179d9c8cb841,
0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b,
};
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wnarrowing"
#endif
// Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding
// to significands above.
static constexpr int16_t pow10_exponents[87] = {
-1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954,
-927, -901, -874, -847, -821, -794, -768, -741, -715, -688, -661,
-635, -608, -582, -555, -529, -502, -475, -449, -422, -396, -369,
-343, -316, -289, -263, -236, -210, -183, -157, -130, -103, -77,
-50, -24, 3, 30, 56, 83, 109, 136, 162, 189, 216,
242, 269, 295, 322, 348, 375, 402, 428, 455, 481, 508,
534, 561, 588, 614, 641, 667, 694, 720, 747, 774, 800,
827, 853, 880, 907, 933, 960, 986, 1013, 1039, 1066};
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
# pragma GCC diagnostic pop
#endif
static constexpr uint64_t power_of_10_64[20] = {
1, FMT_POWERS_OF_10(1ULL), FMT_POWERS_OF_10(1000000000ULL),
10000000000000000000ULL};
// For checking rounding thresholds.
// The kth entry is chosen to be the smallest integer such that the
// upper 32-bits of 10^(k+1) times it is strictly bigger than 5 * 10^k.
static constexpr uint32_t fractional_part_rounding_thresholds[8] = {
2576980378, // ceil(2^31 + 2^32/10^1)
2190433321, // ceil(2^31 + 2^32/10^2)
2151778616, // ceil(2^31 + 2^32/10^3)
2147913145, // ceil(2^31 + 2^32/10^4)
2147526598, // ceil(2^31 + 2^32/10^5)
2147487943, // ceil(2^31 + 2^32/10^6)
2147484078, // ceil(2^31 + 2^32/10^7)
2147483691 // ceil(2^31 + 2^32/10^8)
2576980378U, // ceil(2^31 + 2^32/10^1)
2190433321U, // ceil(2^31 + 2^32/10^2)
2151778616U, // ceil(2^31 + 2^32/10^3)
2147913145U, // ceil(2^31 + 2^32/10^4)
2147526598U, // ceil(2^31 + 2^32/10^5)
2147487943U, // ceil(2^31 + 2^32/10^6)
2147484078U, // ceil(2^31 + 2^32/10^7)
2147483691U // ceil(2^31 + 2^32/10^8)
};
};
// This is a struct rather than an alias to avoid shadowing warnings in gcc.
struct data : basic_data<> {};
#if FMT_CPLUSPLUS < 201703L
template <typename T> constexpr uint64_t basic_data<T>::pow10_significands[];
template <typename T> constexpr int16_t basic_data<T>::pow10_exponents[];
template <typename T> constexpr uint64_t basic_data<T>::power_of_10_64[];
template <typename T>
constexpr uint32_t basic_data<T>::fractional_part_rounding_thresholds[];
#endif
// This is a struct rather than an alias to avoid shadowing warnings in gcc.
struct data : basic_data<> {};
// Returns a cached power of 10 `c_k = c_k.f * pow(2, c_k.e)` such that its
// (binary) exponent satisfies `min_exponent <= c_k.e <= min_exponent + 28`.
FMT_CONSTEXPR inline fp get_cached_power(int min_exponent,
int& pow10_exponent) {
const int shift = 32;
// log10(2) = 0x0.4d104d427de7fbcc...
const int64_t significand = 0x4d104d427de7fbcc;
int index = static_cast<int>(
((min_exponent + fp::num_significand_bits - 1) * (significand >> shift) +
((int64_t(1) << shift) - 1)) // ceil
>> 32 // arithmetic shift
);
// Decimal exponent of the first (smallest) cached power of 10.
const int first_dec_exp = -348;
// Difference between 2 consecutive decimal exponents in cached powers of 10.
const int dec_exp_step = 8;
index = (index - first_dec_exp - 1) / dec_exp_step + 1;
pow10_exponent = first_dec_exp + index * dec_exp_step;
// Using *(x + index) instead of x[index] avoids an issue with some compilers
// using the EDG frontend (e.g. nvhpc/22.3 in C++17 mode).
return {*(data::pow10_significands + index),
*(data::pow10_exponents + index)};
}
template <typename T>
template <typename T, bool doublish = num_bits<T>() == num_bits<double>()>
using convert_float_result =
conditional_t<std::is_same<T, float>::value ||
std::numeric_limits<T>::digits ==
std::numeric_limits<double>::digits,
double, T>;
conditional_t<std::is_same<T, float>::value || doublish, double, T>;
template <typename T>
constexpr auto convert_float(T value) -> convert_float_result<T> {
@ -1970,7 +1882,7 @@ inline auto find_escape(const char* begin, const char* end)
[] { \
/* Use the hidden visibility as a workaround for a GCC bug (#1973). */ \
/* Use a macro-like name to avoid shadowing warnings. */ \
struct FMT_GCC_VISIBILITY_HIDDEN FMT_COMPILE_STRING : base { \
struct FMT_VISIBILITY("hidden") FMT_COMPILE_STRING : base { \
using char_type FMT_MAYBE_UNUSED = fmt::remove_cvref_t<decltype(s[0])>; \
FMT_MAYBE_UNUSED FMT_CONSTEXPR explicit \
operator fmt::basic_string_view<char_type>() const { \
@ -2475,6 +2387,49 @@ FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt {
return base_iterator(out, it);
}
// DEPRECATED!
template <typename Char>
FMT_CONSTEXPR auto parse_align(const Char* begin, const Char* end,
format_specs<Char>& specs) -> const Char* {
FMT_ASSERT(begin != end, "");
auto align = align::none;
auto p = begin + code_point_length(begin);
if (end - p <= 0) p = begin;
for (;;) {
switch (to_ascii(*p)) {
case '<':
align = align::left;
break;
case '>':
align = align::right;
break;
case '^':
align = align::center;
break;
}
if (align != align::none) {
if (p != begin) {
auto c = *begin;
if (c == '}') return begin;
if (c == '{') {
throw_format_error("invalid fill character '{'");
return begin;
}
specs.fill = {begin, to_unsigned(p - begin)};
begin = p + 1;
} else {
++begin;
}
break;
} else if (p == begin) {
break;
}
p = begin;
}
specs.align = align;
return begin;
}
// A floating-point presentation format.
enum class float_format : unsigned char {
general, // General: exponent notation or fixed point based on magnitude.
@ -2833,78 +2788,6 @@ FMT_INLINE FMT_CONSTEXPR bool signbit(T value) {
return std::signbit(static_cast<double>(value));
}
enum class round_direction { unknown, up, down };
// Given the divisor (normally a power of 10), the remainder = v % divisor for
// some number v and the error, returns whether v should be rounded up, down, or
// whether the rounding direction can't be determined due to error.
// error should be less than divisor / 2.
FMT_CONSTEXPR inline round_direction get_round_direction(uint64_t divisor,
uint64_t remainder,
uint64_t error) {
FMT_ASSERT(remainder < divisor, ""); // divisor - remainder won't overflow.
FMT_ASSERT(error < divisor, ""); // divisor - error won't overflow.
FMT_ASSERT(error < divisor - error, ""); // error * 2 won't overflow.
// Round down if (remainder + error) * 2 <= divisor.
if (remainder <= divisor - remainder && error * 2 <= divisor - remainder * 2)
return round_direction::down;
// Round up if (remainder - error) * 2 >= divisor.
if (remainder >= error &&
remainder - error >= divisor - (remainder - error)) {
return round_direction::up;
}
return round_direction::unknown;
}
namespace digits {
enum result {
more, // Generate more digits.
done, // Done generating digits.
error // Digit generation cancelled due to an error.
};
}
struct gen_digits_handler {
char* buf;
int size;
int precision;
int exp10;
bool fixed;
FMT_CONSTEXPR digits::result on_digit(char digit, uint64_t divisor,
uint64_t remainder, uint64_t error,
bool integral) {
FMT_ASSERT(remainder < divisor, "");
buf[size++] = digit;
if (!integral && error >= remainder) return digits::error;
if (size < precision) return digits::more;
if (!integral) {
// Check if error * 2 < divisor with overflow prevention.
// The check is not needed for the integral part because error = 1
// and divisor > (1 << 32) there.
if (error >= divisor || error >= divisor - error) return digits::error;
} else {
FMT_ASSERT(error == 1 && divisor > 2, "");
}
auto dir = get_round_direction(divisor, remainder, error);
if (dir != round_direction::up)
return dir == round_direction::down ? digits::done : digits::error;
++buf[size - 1];
for (int i = size - 1; i > 0 && buf[i] > '9'; --i) {
buf[i] = '0';
++buf[i - 1];
}
if (buf[0] > '9') {
buf[0] = '1';
if (fixed)
buf[size++] = '0';
else
++exp10;
}
return digits::done;
}
};
inline FMT_CONSTEXPR20 void adjust_precision(int& precision, int exp10) {
// Adjust fixed precision by exponent because it is relative to decimal
// point.
@ -2913,101 +2796,6 @@ inline FMT_CONSTEXPR20 void adjust_precision(int& precision, int exp10) {
precision += exp10;
}
// Generates output using the Grisu digit-gen algorithm.
// error: the size of the region (lower, upper) outside of which numbers
// definitely do not round to value (Delta in Grisu3).
FMT_INLINE FMT_CONSTEXPR20 auto grisu_gen_digits(fp value, uint64_t error,
int& exp,
gen_digits_handler& handler)
-> digits::result {
const fp one(1ULL << -value.e, value.e);
// The integral part of scaled value (p1 in Grisu) = value / one. It cannot be
// zero because it contains a product of two 64-bit numbers with MSB set (due
// to normalization) - 1, shifted right by at most 60 bits.
auto integral = static_cast<uint32_t>(value.f >> -one.e);
FMT_ASSERT(integral != 0, "");
FMT_ASSERT(integral == value.f >> -one.e, "");
// The fractional part of scaled value (p2 in Grisu) c = value % one.
uint64_t fractional = value.f & (one.f - 1);
exp = count_digits(integral); // kappa in Grisu.
// Non-fixed formats require at least one digit and no precision adjustment.
if (handler.fixed) {
adjust_precision(handler.precision, exp + handler.exp10);
// Check if precision is satisfied just by leading zeros, e.g.
// format("{:.2f}", 0.001) gives "0.00" without generating any digits.
if (handler.precision <= 0) {
if (handler.precision < 0) return digits::done;
// Divide by 10 to prevent overflow.
uint64_t divisor = data::power_of_10_64[exp - 1] << -one.e;
auto dir = get_round_direction(divisor, value.f / 10, error * 10);
if (dir == round_direction::unknown) return digits::error;
handler.buf[handler.size++] = dir == round_direction::up ? '1' : '0';
return digits::done;
}
}
// Generate digits for the integral part. This can produce up to 10 digits.
do {
uint32_t digit = 0;
auto divmod_integral = [&](uint32_t divisor) {
digit = integral / divisor;
integral %= divisor;
};
// This optimization by Milo Yip reduces the number of integer divisions by
// one per iteration.
switch (exp) {
case 10:
divmod_integral(1000000000);
break;
case 9:
divmod_integral(100000000);
break;
case 8:
divmod_integral(10000000);
break;
case 7:
divmod_integral(1000000);
break;
case 6:
divmod_integral(100000);
break;
case 5:
divmod_integral(10000);
break;
case 4:
divmod_integral(1000);
break;
case 3:
divmod_integral(100);
break;
case 2:
divmod_integral(10);
break;
case 1:
digit = integral;
integral = 0;
break;
default:
FMT_ASSERT(false, "invalid number of digits");
}
--exp;
auto remainder = (static_cast<uint64_t>(integral) << -one.e) + fractional;
auto result = handler.on_digit(static_cast<char>('0' + digit),
data::power_of_10_64[exp] << -one.e,
remainder, error, true);
if (result != digits::more) return result;
} while (exp > 0);
// Generate digits for the fractional part.
for (;;) {
fractional *= 10;
error *= 10;
char digit = static_cast<char>('0' + (fractional >> -one.e));
fractional &= one.f - 1;
--exp;
auto result = handler.on_digit(digit, one.f, fractional, error, false);
if (result != digits::more) return result;
}
}
class bigint {
private:
// A bigint is stored as an array of bigits (big digits), with bigit at index
@ -3108,7 +2896,7 @@ class bigint {
auto size = other.bigits_.size();
bigits_.resize(size);
auto data = other.bigits_.data();
std::copy(data, data + size, make_checked(bigits_.data(), size));
copy_str<bigit>(data, data + size, bigits_.data());
exp_ = other.exp_;
}
@ -3322,6 +3110,7 @@ FMT_CONSTEXPR20 inline void format_dragon(basic_fp<uint128_t> value,
}
int even = static_cast<int>((value.f & 1) == 0);
if (!upper) upper = &lower;
bool shortest = num_digits < 0;
if ((flags & dragon::fixup) != 0) {
if (add_compare(numerator, *upper, denominator) + even <= 0) {
--exp10;
@ -3334,7 +3123,7 @@ FMT_CONSTEXPR20 inline void format_dragon(basic_fp<uint128_t> value,
if ((flags & dragon::fixed) != 0) adjust_precision(num_digits, exp10 + 1);
}
// Invariant: value == (numerator / denominator) * pow(10, exp10).
if (num_digits < 0) {
if (shortest) {
// Generate the shortest representation.
num_digits = 0;
char* data = buf.data();
@ -3364,7 +3153,7 @@ FMT_CONSTEXPR20 inline void format_dragon(basic_fp<uint128_t> value,
}
// Generate the given number of digits.
exp10 -= num_digits - 1;
if (num_digits == 0) {
if (num_digits <= 0) {
denominator *= 10;
auto digit = add_compare(numerator, numerator, denominator) > 0 ? '1' : '0';
buf.push_back(digit);
@ -3389,7 +3178,8 @@ FMT_CONSTEXPR20 inline void format_dragon(basic_fp<uint128_t> value,
}
if (buf[0] == overflow) {
buf[0] = '1';
++exp10;
if ((flags & dragon::fixed) != 0) buf.push_back('0');
else ++exp10;
}
return;
}
@ -3508,7 +3298,7 @@ FMT_CONSTEXPR20 auto format_float(Float value, int precision, float_specs specs,
int exp = 0;
bool use_dragon = true;
unsigned dragon_flags = 0;
if (!is_fast_float<Float>()) {
if (!is_fast_float<Float>() || is_constant_evaluated()) {
const auto inv_log2_10 = 0.3010299956639812; // 1 / log2(10)
using info = dragonbox::float_info<decltype(converted_value)>;
const auto f = basic_fp<typename info::carrier_uint>(converted_value);
@ -3516,10 +3306,11 @@ FMT_CONSTEXPR20 auto format_float(Float value, int precision, float_specs specs,
// 10^(exp - 1) <= value < 10^exp or 10^exp <= value < 10^(exp + 1).
// This is based on log10(value) == log2(value) / log2(10) and approximation
// of log2(value) by e + num_fraction_bits idea from double-conversion.
exp = static_cast<int>(
std::ceil((f.e + count_digits<1>(f.f) - 1) * inv_log2_10 - 1e-10));
auto e = (f.e + count_digits<1>(f.f) - 1) * inv_log2_10 - 1e-10;
exp = static_cast<int>(e);
if (e > exp) ++exp; // Compute ceil.
dragon_flags = dragon::fixup;
} else if (!is_constant_evaluated() && precision < 0) {
} else if (precision < 0) {
// Use Dragonbox for the shortest format.
if (specs.binary32) {
auto dec = dragonbox::to_decimal(static_cast<float>(value));
@ -3529,25 +3320,6 @@ FMT_CONSTEXPR20 auto format_float(Float value, int precision, float_specs specs,
auto dec = dragonbox::to_decimal(static_cast<double>(value));
write<char>(buffer_appender<char>(buf), dec.significand);
return dec.exponent;
} else if (is_constant_evaluated()) {
// Use Grisu + Dragon4 for the given precision:
// https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf.
const int min_exp = -60; // alpha in Grisu.
int cached_exp10 = 0; // K in Grisu.
fp normalized = normalize(fp(converted_value));
const auto cached_pow = get_cached_power(
min_exp - (normalized.e + fp::num_significand_bits), cached_exp10);
normalized = normalized * cached_pow;
gen_digits_handler handler{buf.data(), 0, precision, -cached_exp10, fixed};
if (grisu_gen_digits(normalized, 1, exp, handler) != digits::error &&
!is_constant_evaluated()) {
exp += handler.exp10;
buf.try_resize(to_unsigned(handler.size));
use_dragon = false;
} else {
exp += handler.size - cached_exp10 - 1;
precision = handler.precision;
}
} else {
// Extract significand bits and exponent bits.
using info = dragonbox::float_info<double>;
@ -3566,7 +3338,7 @@ FMT_CONSTEXPR20 auto format_float(Float value, int precision, float_specs specs,
significand <<= 1;
} else {
// Normalize subnormal inputs.
FMT_ASSERT(significand != 0, "zeros should not appear hear");
FMT_ASSERT(significand != 0, "zeros should not appear here");
int shift = countl_zero(significand);
FMT_ASSERT(shift >= num_bits<uint64_t>() - num_significand_bits<double>(),
"");
@ -3603,9 +3375,7 @@ FMT_CONSTEXPR20 auto format_float(Float value, int precision, float_specs specs,
}
// Compute the actual number of decimal digits to print.
if (fixed) {
adjust_precision(precision, exp + digits_in_the_first_segment);
}
if (fixed) adjust_precision(precision, exp + digits_in_the_first_segment);
// Use Dragon4 only when there might be not enough digits in the first
// segment.
@ -4091,8 +3861,7 @@ FMT_CONSTEXPR auto get_dynamic_spec(FormatArg arg, ErrorHandler eh) -> int {
}
template <typename Context, typename ID>
FMT_CONSTEXPR auto get_arg(Context& ctx, ID id) ->
typename Context::format_arg {
FMT_CONSTEXPR auto get_arg(Context& ctx, ID id) -> decltype(ctx.arg(id)) {
auto arg = ctx.arg(id);
if (!arg) ctx.on_error("argument not found");
return arg;
@ -4117,15 +3886,6 @@ FMT_CONSTEXPR void handle_dynamic_spec(int& value,
}
#if FMT_USE_USER_DEFINED_LITERALS
template <typename Char> struct udl_formatter {
basic_string_view<Char> str;
template <typename... T>
auto operator()(T&&... args) const -> std::basic_string<Char> {
return vformat(str, fmt::make_format_args<buffer_context<Char>>(args...));
}
};
# if FMT_USE_NONTYPE_TEMPLATE_ARGS
template <typename T, typename Char, size_t N,
fmt::detail_exported::fixed_string<Char, N> Str>
@ -4179,28 +3939,28 @@ FMT_API void format_error_code(buffer<char>& out, int error_code,
FMT_API void report_error(format_func func, int error_code,
const char* message) noexcept;
FMT_END_DETAIL_NAMESPACE
} // namespace detail
FMT_API auto vsystem_error(int error_code, string_view format_str,
format_args args) -> std::system_error;
/**
\rst
Constructs :class:`std::system_error` with a message formatted with
``fmt::format(fmt, args...)``.
\rst
Constructs :class:`std::system_error` with a message formatted with
``fmt::format(fmt, args...)``.
*error_code* is a system error code as given by ``errno``.
**Example**::
// This throws std::system_error with the description
// cannot open file 'madeup': No such file or directory
// or similar (system message may vary).
const char* filename = "madeup";
std::FILE* file = std::fopen(filename, "r");
if (!file)
throw fmt::system_error(errno, "cannot open file '{}'", filename);
\endrst
*/
**Example**::
// This throws std::system_error with the description
// cannot open file 'madeup': No such file or directory
// or similar (system message may vary).
const char* filename = "madeup";
std::FILE* file = std::fopen(filename, "r");
if (!file)
throw fmt::system_error(errno, "cannot open file '{}'", filename);
\endrst
*/
template <typename... T>
auto system_error(int error_code, format_string<T...> fmt, T&&... args)
-> std::system_error {
@ -4292,8 +4052,8 @@ class format_int {
template <typename T, typename Char>
struct formatter<T, Char, enable_if_t<detail::has_format_as<T>::value>>
: private formatter<detail::format_as_t<T>> {
using base = formatter<detail::format_as_t<T>>;
: private formatter<detail::format_as_t<T>, Char> {
using base = formatter<detail::format_as_t<T>, Char>;
using base::parse;
template <typename FormatContext>
@ -4302,22 +4062,24 @@ struct formatter<T, Char, enable_if_t<detail::has_format_as<T>::value>>
}
};
template <typename Char>
struct formatter<void*, Char> : formatter<const void*, Char> {
template <typename FormatContext>
auto format(void* val, FormatContext& ctx) const -> decltype(ctx.out()) {
return formatter<const void*, Char>::format(val, ctx);
}
};
#define FMT_FORMAT_AS(Type, Base) \
template <typename Char> \
struct formatter<Type, Char> : formatter<Base, Char> {}
FMT_FORMAT_AS(signed char, int);
FMT_FORMAT_AS(unsigned char, unsigned);
FMT_FORMAT_AS(short, int);
FMT_FORMAT_AS(unsigned short, unsigned);
FMT_FORMAT_AS(long, detail::long_type);
FMT_FORMAT_AS(unsigned long, detail::ulong_type);
FMT_FORMAT_AS(Char*, const Char*);
FMT_FORMAT_AS(std::basic_string<Char>, basic_string_view<Char>);
FMT_FORMAT_AS(std::nullptr_t, const void*);
FMT_FORMAT_AS(detail::std_string_view<Char>, basic_string_view<Char>);
FMT_FORMAT_AS(void*, const void*);
template <typename Char, size_t N>
struct formatter<Char[N], Char> : formatter<basic_string_view<Char>, Char> {
template <typename FormatContext>
FMT_CONSTEXPR auto format(const Char* val, FormatContext& ctx) const
-> decltype(ctx.out()) {
return formatter<basic_string_view<Char>, Char>::format(val, ctx);
}
};
struct formatter<Char[N], Char> : formatter<basic_string_view<Char>, Char> {};
/**
\rst
@ -4393,7 +4155,9 @@ template <> struct formatter<bytes> {
};
// group_digits_view is not derived from view because it copies the argument.
template <typename T> struct group_digits_view { T value; };
template <typename T> struct group_digits_view {
T value;
};
/**
\rst
@ -4523,7 +4287,8 @@ auto join(Range&& range, string_view sep)
std::string answer = fmt::to_string(42);
\endrst
*/
template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)>
template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value &&
!detail::has_format_as<T>::value)>
inline auto to_string(const T& value) -> std::string {
auto buffer = memory_buffer();
detail::write<char>(appender(buffer), value);
@ -4548,7 +4313,15 @@ FMT_NODISCARD auto to_string(const basic_memory_buffer<Char, SIZE>& buf)
return std::basic_string<Char>(buf.data(), size);
}
FMT_BEGIN_DETAIL_NAMESPACE
template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value &&
detail::has_format_as<T>::value)>
inline auto to_string(const T& value) -> std::string {
return to_string(format_as(value));
}
FMT_END_EXPORT
namespace detail {
template <typename Char>
void vformat_to(buffer<Char>& buf, basic_string_view<Char> fmt,
@ -4619,6 +4392,8 @@ void vformat_to(buffer<Char>& buf, basic_string_view<Char> fmt,
detail::parse_format_string<false>(fmt, format_handler(out, fmt, args, loc));
}
FMT_BEGIN_EXPORT
#ifndef FMT_HEADER_ONLY
extern template FMT_API void vformat_to(buffer<char>&, string_view,
typename vformat_args<>::type,
@ -4631,7 +4406,7 @@ extern template FMT_API auto decimal_point_impl(locale_ref) -> char;
extern template FMT_API auto decimal_point_impl(locale_ref) -> wchar_t;
#endif // FMT_HEADER_ONLY
FMT_END_DETAIL_NAMESPACE
} // namespace detail
#if FMT_USE_USER_DEFINED_LITERALS
inline namespace literals {

@ -123,10 +123,10 @@ using wcstring_view = basic_cstring_view<wchar_t>;
#ifdef _WIN32
FMT_API const std::error_category& system_category() noexcept;
FMT_BEGIN_DETAIL_NAMESPACE
namespace detail {
FMT_API void format_windows_error(buffer<char>& out, int error_code,
const char* message) noexcept;
FMT_END_DETAIL_NAMESPACE
}
FMT_API std::system_error vwindows_error(int error_code, string_view format_str,
format_args args);
@ -328,7 +328,7 @@ class FMT_API file {
// Returns the memory page size.
long getpagesize();
FMT_BEGIN_DETAIL_NAMESPACE
namespace detail {
struct buffer_size {
buffer_size() = default;
@ -387,7 +387,7 @@ class file_buffer final : public buffer<char> {
}
};
FMT_END_DETAIL_NAMESPACE
} // namespace detail
// Added {} below to work around default constructor error known to
// occur in Xcode versions 7.2.1 and 8.2.1.

@ -155,7 +155,7 @@ inline void vprint_directly(std::ostream& os, string_view format_str,
} // namespace detail
FMT_MODULE_EXPORT template <typename Char>
FMT_EXPORT template <typename Char>
void vprint(std::basic_ostream<Char>& os,
basic_string_view<type_identity_t<Char>> format_str,
basic_format_args<buffer_context<type_identity_t<Char>>> args) {
@ -174,7 +174,7 @@ void vprint(std::basic_ostream<Char>& os,
fmt::print(cerr, "Don't {}!", "panic");
\endrst
*/
FMT_MODULE_EXPORT template <typename... T>
FMT_EXPORT template <typename... T>
void print(std::ostream& os, format_string<T...> fmt, T&&... args) {
const auto& vargs = fmt::make_format_args(args...);
if (detail::is_utf8())
@ -183,7 +183,7 @@ void print(std::ostream& os, format_string<T...> fmt, T&&... args) {
detail::vprint_directly(os, fmt, vargs);
}
FMT_MODULE_EXPORT
FMT_EXPORT
template <typename... Args>
void print(std::wostream& os,
basic_format_string<wchar_t, type_identity_t<Args>...> fmt,
@ -191,12 +191,12 @@ void print(std::wostream& os,
vprint(os, fmt, fmt::make_format_args<buffer_context<wchar_t>>(args...));
}
FMT_MODULE_EXPORT template <typename... T>
FMT_EXPORT template <typename... T>
void println(std::ostream& os, format_string<T...> fmt, T&&... args) {
fmt::print(os, "{}\n", fmt::format(fmt, std::forward<T>(args)...));
}
FMT_MODULE_EXPORT
FMT_EXPORT
template <typename... Args>
void println(std::wostream& os,
basic_format_string<wchar_t, type_identity_t<Args>...> fmt,

@ -18,20 +18,14 @@ FMT_BEGIN_EXPORT
template <typename T> struct printf_formatter { printf_formatter() = delete; };
template <typename Char>
class basic_printf_parse_context : public basic_format_parse_context<Char> {
using basic_format_parse_context<Char>::basic_format_parse_context;
};
template <typename OutputIt, typename Char> class basic_printf_context {
template <typename Char> class basic_printf_context {
private:
OutputIt out_;
detail::buffer_appender<Char> out_;
basic_format_args<basic_printf_context> args_;
public:
using char_type = Char;
using format_arg = basic_format_arg<basic_printf_context>;
using parse_context_type = basic_printf_parse_context<Char>;
using parse_context_type = basic_format_parse_context<Char>;
template <typename T> using formatter_type = printf_formatter<T>;
/**
@ -40,68 +34,68 @@ template <typename OutputIt, typename Char> class basic_printf_context {
stored in the context object so make sure they have appropriate lifetimes.
\endrst
*/
basic_printf_context(OutputIt out,
basic_printf_context(detail::buffer_appender<Char> out,
basic_format_args<basic_printf_context> args)
: out_(out), args_(args) {}
OutputIt out() { return out_; }
void advance_to(OutputIt it) { out_ = it; }
auto out() -> detail::buffer_appender<Char> { return out_; }
void advance_to(detail::buffer_appender<Char>) {}
detail::locale_ref locale() { return {}; }
auto locale() -> detail::locale_ref { return {}; }
format_arg arg(int id) const { return args_.get(id); }
auto arg(int id) const -> basic_format_arg<basic_printf_context> {
return args_.get(id);
}
FMT_CONSTEXPR void on_error(const char* message) {
detail::error_handler().on_error(message);
}
};
FMT_BEGIN_DETAIL_NAMESPACE
namespace detail {
// Checks if a value fits in int - used to avoid warnings about comparing
// signed and unsigned integers.
template <bool IsSigned> struct int_checker {
template <typename T> static bool fits_in_int(T value) {
template <typename T> static auto fits_in_int(T value) -> bool {
unsigned max = max_value<int>();
return value <= max;
}
static bool fits_in_int(bool) { return true; }
static auto fits_in_int(bool) -> bool { return true; }
};
template <> struct int_checker<true> {
template <typename T> static bool fits_in_int(T value) {
template <typename T> static auto fits_in_int(T value) -> bool {
return value >= (std::numeric_limits<int>::min)() &&
value <= max_value<int>();
}
static bool fits_in_int(int) { return true; }
static auto fits_in_int(int) -> bool { return true; }
};
class printf_precision_handler {
public:
struct printf_precision_handler {
template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
int operator()(T value) {
auto operator()(T value) -> int {
if (!int_checker<std::numeric_limits<T>::is_signed>::fits_in_int(value))
throw_format_error("number is too big");
return (std::max)(static_cast<int>(value), 0);
}
template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)>
int operator()(T) {
auto operator()(T) -> int {
throw_format_error("precision is not integer");
return 0;
}
};
// An argument visitor that returns true iff arg is a zero integer.
class is_zero_int {
public:
struct is_zero_int {
template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
bool operator()(T value) {
auto operator()(T value) -> bool {
return value == 0;
}
template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)>
bool operator()(T) {
auto operator()(T) -> bool {
return false;
}
};
@ -132,22 +126,23 @@ template <typename T, typename Context> class arg_converter {
if (const_check(sizeof(target_type) <= sizeof(int))) {
// Extra casts are used to silence warnings.
if (is_signed) {
arg_ = detail::make_arg<Context>(
static_cast<int>(static_cast<target_type>(value)));
auto n = static_cast<int>(static_cast<target_type>(value));
arg_ = detail::make_arg<Context>(n);
} else {
using unsigned_type = typename make_unsigned_or_bool<target_type>::type;
arg_ = detail::make_arg<Context>(
static_cast<unsigned>(static_cast<unsigned_type>(value)));
auto n = static_cast<unsigned>(static_cast<unsigned_type>(value));
arg_ = detail::make_arg<Context>(n);
}
} else {
if (is_signed) {
// glibc's printf doesn't sign extend arguments of smaller types:
// std::printf("%lld", -42); // prints "4294967254"
// but we don't have to do the same because it's a UB.
arg_ = detail::make_arg<Context>(static_cast<long long>(value));
auto n = static_cast<long long>(value);
arg_ = detail::make_arg<Context>(n);
} else {
arg_ = detail::make_arg<Context>(
static_cast<typename make_unsigned_or_bool<U>::type>(value));
auto n = static_cast<typename make_unsigned_or_bool<U>::type>(value);
arg_ = detail::make_arg<Context>(n);
}
}
}
@ -175,8 +170,8 @@ template <typename Context> class char_converter {
template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
void operator()(T value) {
arg_ = detail::make_arg<Context>(
static_cast<typename Context::char_type>(value));
auto c = static_cast<typename Context::char_type>(value);
arg_ = detail::make_arg<Context>(c);
}
template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)>
@ -186,8 +181,8 @@ template <typename Context> class char_converter {
// An argument visitor that return a pointer to a C string if argument is a
// string or null otherwise.
template <typename Char> struct get_cstring {
template <typename T> const Char* operator()(T) { return nullptr; }
const Char* operator()(const Char* s) { return s; }
template <typename T> auto operator()(T) -> const Char* { return nullptr; }
auto operator()(const Char* s) -> const Char* { return s; }
};
// Checks if an argument is a valid printf width specifier and sets
@ -200,7 +195,7 @@ template <typename Char> class printf_width_handler {
explicit printf_width_handler(format_specs<Char>& specs) : specs_(specs) {}
template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
unsigned operator()(T value) {
auto operator()(T value) -> unsigned {
auto width = static_cast<uint32_or_64_or_128_t<T>>(value);
if (detail::is_negative(value)) {
specs_.align = align::left;
@ -212,7 +207,7 @@ template <typename Char> class printf_width_handler {
}
template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value)>
unsigned operator()(T) {
auto operator()(T) -> unsigned {
throw_format_error("width is not integer");
return 0;
}
@ -227,80 +222,85 @@ auto make_arg_formatter(buffer_appender<Char> iter, format_specs<Char>& s)
}
// The ``printf`` argument formatter.
template <typename OutputIt, typename Char>
template <typename Char>
class printf_arg_formatter : public arg_formatter<Char> {
private:
using base = arg_formatter<Char>;
using context_type = basic_printf_context<OutputIt, Char>;
using context_type = basic_printf_context<Char>;
context_type& context_;
OutputIt write_null_pointer(bool is_string = false) {
void write_null_pointer(bool is_string = false) {
auto s = this->specs;
s.type = presentation_type::none;
return write_bytes(this->out, is_string ? "(null)" : "(nil)", s);
write_bytes(this->out, is_string ? "(null)" : "(nil)", s);
}
public:
printf_arg_formatter(OutputIt iter, format_specs<Char>& s, context_type& ctx)
printf_arg_formatter(buffer_appender<Char> iter, format_specs<Char>& s,
context_type& ctx)
: base(make_arg_formatter(iter, s)), context_(ctx) {}
OutputIt operator()(monostate value) { return base::operator()(value); }
void operator()(monostate value) { base::operator()(value); }
template <typename T, FMT_ENABLE_IF(detail::is_integral<T>::value)>
OutputIt operator()(T value) {
void operator()(T value) {
// MSVC2013 fails to compile separate overloads for bool and Char so use
// std::is_same instead.
if (std::is_same<T, Char>::value) {
format_specs<Char> fmt_specs = this->specs;
if (fmt_specs.type != presentation_type::none &&
fmt_specs.type != presentation_type::chr) {
return (*this)(static_cast<int>(value));
}
fmt_specs.sign = sign::none;
fmt_specs.alt = false;
fmt_specs.fill[0] = ' '; // Ignore '0' flag for char types.
// align::numeric needs to be overwritten here since the '0' flag is
// ignored for non-numeric types
if (fmt_specs.align == align::none || fmt_specs.align == align::numeric)
fmt_specs.align = align::right;
return write<Char>(this->out, static_cast<Char>(value), fmt_specs);
if (!std::is_same<T, Char>::value) {
base::operator()(value);
return;
}
return base::operator()(value);
format_specs<Char> fmt_specs = this->specs;
if (fmt_specs.type != presentation_type::none &&
fmt_specs.type != presentation_type::chr) {
return (*this)(static_cast<int>(value));
}
fmt_specs.sign = sign::none;
fmt_specs.alt = false;
fmt_specs.fill[0] = ' '; // Ignore '0' flag for char types.
// align::numeric needs to be overwritten here since the '0' flag is
// ignored for non-numeric types
if (fmt_specs.align == align::none || fmt_specs.align == align::numeric)
fmt_specs.align = align::right;
write<Char>(this->out, static_cast<Char>(value), fmt_specs);
}
template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)>
OutputIt operator()(T value) {
return base::operator()(value);
void operator()(T value) {
base::operator()(value);
}
/** Formats a null-terminated C string. */
OutputIt operator()(const char* value) {
if (value) return base::operator()(value);
return write_null_pointer(this->specs.type != presentation_type::pointer);
void operator()(const char* value) {
if (value)
base::operator()(value);
else
write_null_pointer(this->specs.type != presentation_type::pointer);
}
/** Formats a null-terminated wide C string. */
OutputIt operator()(const wchar_t* value) {
if (value) return base::operator()(value);
return write_null_pointer(this->specs.type != presentation_type::pointer);
void operator()(const wchar_t* value) {
if (value)
base::operator()(value);
else
write_null_pointer(this->specs.type != presentation_type::pointer);
}
OutputIt operator()(basic_string_view<Char> value) {
return base::operator()(value);
}
void operator()(basic_string_view<Char> value) { base::operator()(value); }
/** Formats a pointer. */
OutputIt operator()(const void* value) {
return value ? base::operator()(value) : write_null_pointer();
void operator()(const void* value) {
if (value)
base::operator()(value);
else
write_null_pointer();
}
/** Formats an argument of a custom (user-defined) type. */
OutputIt operator()(typename basic_format_arg<context_type>::handle handle) {
auto parse_ctx =
basic_printf_parse_context<Char>(basic_string_view<Char>());
void operator()(typename basic_format_arg<context_type>::handle handle) {
auto parse_ctx = basic_format_parse_context<Char>({});
handle.format(parse_ctx, context_);
return this->out;
}
};
@ -318,9 +318,7 @@ void parse_flags(format_specs<Char>& specs, const Char*& it, const Char* end) {
specs.fill[0] = '0';
break;
case ' ':
if (specs.sign != sign::plus) {
specs.sign = sign::space;
}
if (specs.sign != sign::plus) specs.sign = sign::space;
break;
case '#':
specs.alt = true;
@ -332,8 +330,8 @@ void parse_flags(format_specs<Char>& specs, const Char*& it, const Char* end) {
}
template <typename Char, typename GetArg>
int parse_header(const Char*& it, const Char* end, format_specs<Char>& specs,
GetArg get_arg) {
auto parse_header(const Char*& it, const Char* end, format_specs<Char>& specs,
GetArg get_arg) -> int {
int arg_index = -1;
Char c = *it;
if (c >= '0' && c <= '9') {
@ -414,8 +412,8 @@ void vprintf(buffer<Char>& buf, basic_string_view<Char> format,
basic_format_args<Context> args) {
using iterator = buffer_appender<Char>;
auto out = iterator(buf);
auto context = basic_printf_context<iterator, Char>(out, args);
auto parse_ctx = basic_printf_parse_context<Char>(format);
auto context = basic_printf_context<Char>(out, args);
auto parse_ctx = basic_format_parse_context<Char>(format);
// Returns the argument with specified index or, if arg_index is -1, the next
// argument.
@ -437,12 +435,11 @@ void vprintf(buffer<Char>& buf, basic_string_view<Char> format,
}
Char c = *it++;
if (it != end && *it == c) {
out = write(out, basic_string_view<Char>(start, to_unsigned(it - start)));
write(out, basic_string_view<Char>(start, to_unsigned(it - start)));
start = ++it;
continue;
}
out =
write(out, basic_string_view<Char>(start, to_unsigned(it - 1 - start)));
write(out, basic_string_view<Char>(start, to_unsigned(it - 1 - start)));
auto specs = format_specs<Char>();
specs.align = align::right;
@ -469,16 +466,17 @@ void vprintf(buffer<Char>& buf, basic_string_view<Char> format,
auto arg = get_arg(arg_index);
// For d, i, o, u, x, and X conversion specifiers, if a precision is
// specified, the '0' flag is ignored
if (specs.precision >= 0 && arg.is_integral())
specs.fill[0] =
' '; // Ignore '0' flag for non-numeric types or if '-' present.
if (specs.precision >= 0 && arg.is_integral()) {
// Ignore '0' for non-numeric types or if '-' present.
specs.fill[0] = ' ';
}
if (specs.precision >= 0 && arg.type() == type::cstring_type) {
auto str = visit_format_arg(get_cstring<Char>(), arg);
auto str_end = str + specs.precision;
auto nul = std::find(str, str_end, Char());
arg = make_arg<basic_printf_context<iterator, Char>>(
basic_string_view<Char>(
str, to_unsigned(nul != str_end ? nul - str : specs.precision)));
auto sv = basic_string_view<Char>(
str, to_unsigned(nul != str_end ? nul - str : specs.precision));
arg = make_arg<basic_printf_context<Char>>(sv);
}
if (specs.alt && visit_format_arg(is_zero_int(), arg)) specs.alt = false;
if (specs.fill[0] == '0') {
@ -540,8 +538,7 @@ void vprintf(buffer<Char>& buf, basic_string_view<Char> format,
type = 'd';
break;
case 'c':
visit_format_arg(
char_converter<basic_printf_context<iterator, Char>>(arg), arg);
visit_format_arg(char_converter<basic_printf_context<Char>>(arg), arg);
break;
}
}
@ -552,19 +549,14 @@ void vprintf(buffer<Char>& buf, basic_string_view<Char> format,
start = it;
// Format argument.
out = visit_format_arg(
printf_arg_formatter<iterator, Char>(out, specs, context), arg);
visit_format_arg(printf_arg_formatter<Char>(out, specs, context), arg);
}
write(out, basic_string_view<Char>(start, to_unsigned(it - start)));
}
FMT_END_DETAIL_NAMESPACE
template <typename Char>
using basic_printf_context_t =
basic_printf_context<detail::buffer_appender<Char>, Char>;
} // namespace detail
using printf_context = basic_printf_context_t<char>;
using wprintf_context = basic_printf_context_t<wchar_t>;
using printf_context = basic_printf_context<char>;
using wprintf_context = basic_printf_context<wchar_t>;
using printf_args = basic_format_args<printf_context>;
using wprintf_args = basic_format_args<wprintf_context>;
@ -581,25 +573,20 @@ inline auto make_printf_args(const T&... args)
return {args...};
}
/**
\rst
Constructs an `~fmt::format_arg_store` object that contains references to
arguments and can be implicitly converted to `~fmt::wprintf_args`.
\endrst
*/
// DEPRECATED!
template <typename... T>
inline auto make_wprintf_args(const T&... args)
-> format_arg_store<wprintf_context, T...> {
return {args...};
}
template <typename S, typename Char = char_t<S>>
template <typename Char>
inline auto vsprintf(
const S& fmt,
basic_format_args<basic_printf_context_t<type_identity_t<Char>>> args)
basic_string_view<Char> fmt,
basic_format_args<basic_printf_context<type_identity_t<Char>>> args)
-> std::basic_string<Char> {
auto buf = basic_memory_buffer<Char>();
detail::vprintf(buf, detail::to_string_view(fmt), args);
detail::vprintf(buf, fmt, args);
return to_string(buf);
}
@ -615,18 +602,17 @@ inline auto vsprintf(
template <typename S, typename... T,
typename Char = enable_if_t<detail::is_string<S>::value, char_t<S>>>
inline auto sprintf(const S& fmt, const T&... args) -> std::basic_string<Char> {
using context = basic_printf_context_t<Char>;
return vsprintf(detail::to_string_view(fmt),
fmt::make_format_args<context>(args...));
fmt::make_format_args<basic_printf_context<Char>>(args...));
}
template <typename S, typename Char = char_t<S>>
template <typename Char>
inline auto vfprintf(
std::FILE* f, const S& fmt,
basic_format_args<basic_printf_context_t<type_identity_t<Char>>> args)
std::FILE* f, basic_string_view<Char> fmt,
basic_format_args<basic_printf_context<type_identity_t<Char>>> args)
-> int {
auto buf = basic_memory_buffer<Char>();
detail::vprintf(buf, detail::to_string_view(fmt), args);
detail::vprintf(buf, fmt, args);
size_t size = buf.size();
return std::fwrite(buf.data(), sizeof(Char), size, f) < size
? -1
@ -644,17 +630,16 @@ inline auto vfprintf(
*/
template <typename S, typename... T, typename Char = char_t<S>>
inline auto fprintf(std::FILE* f, const S& fmt, const T&... args) -> int {
using context = basic_printf_context_t<Char>;
return vfprintf(f, detail::to_string_view(fmt),
fmt::make_format_args<context>(args...));
fmt::make_format_args<basic_printf_context<Char>>(args...));
}
template <typename S, typename Char = char_t<S>>
inline auto vprintf(
const S& fmt,
basic_format_args<basic_printf_context_t<type_identity_t<Char>>> args)
template <typename Char>
FMT_DEPRECATED inline auto vprintf(
basic_string_view<Char> fmt,
basic_format_args<basic_printf_context<type_identity_t<Char>>> args)
-> int {
return vfprintf(stdout, detail::to_string_view(fmt), args);
return vfprintf(stdout, fmt, args);
}
/**
@ -666,11 +651,14 @@ inline auto vprintf(
fmt::printf("Elapsed time: %.2f seconds", 1.23);
\endrst
*/
template <typename S, typename... T, FMT_ENABLE_IF(detail::is_string<S>::value)>
inline auto printf(const S& fmt, const T&... args) -> int {
return vprintf(
detail::to_string_view(fmt),
fmt::make_format_args<basic_printf_context_t<char_t<S>>>(args...));
template <typename... T>
inline auto printf(string_view fmt, const T&... args) -> int {
return vfprintf(stdout, fmt, make_printf_args(args...));
}
template <typename... T>
FMT_DEPRECATED inline auto printf(basic_string_view<wchar_t> fmt,
const T&... args) -> int {
return vfprintf(stdout, fmt, make_wprintf_args(args...));
}
FMT_END_EXPORT

@ -668,8 +668,11 @@ template <typename Container> struct all {
} // namespace detail
template <typename T, typename Char>
struct formatter<T, Char,
enable_if_t<detail::is_container_adaptor_like<T>::value>>
struct formatter<
T, Char,
enable_if_t<conjunction<detail::is_container_adaptor_like<T>,
bool_constant<range_format_kind<T, Char>::value ==
range_format::disabled>>::value>>
: formatter<detail::all<typename T::container_type>, Char> {
using all = detail::all<typename T::container_type>;
template <typename FormatContext>

@ -8,6 +8,8 @@
#ifndef FMT_STD_H_
#define FMT_STD_H_
#include <atomic>
#include <bitset>
#include <cstdlib>
#include <exception>
#include <memory>
@ -15,7 +17,9 @@
#include <type_traits>
#include <typeinfo>
#include <utility>
#include <vector>
#include "format.h"
#include "ostream.h"
#if FMT_HAS_INCLUDE(<version>)
@ -44,27 +48,48 @@
# endif
#endif
// Check if typeid is available.
#ifndef FMT_USE_TYPEID
// __RTTI is for EDG compilers. In MSVC typeid is available without RTTI.
# if defined(__GXX_RTTI) || FMT_HAS_FEATURE(cxx_rtti) || FMT_MSC_VERSION || \
defined(__INTEL_RTTI__) || defined(__RTTI)
# define FMT_USE_TYPEID 1
# else
# define FMT_USE_TYPEID 0
# endif
#endif
#ifdef __cpp_lib_filesystem
FMT_BEGIN_NAMESPACE
namespace detail {
template <typename Char> auto get_path_string(const std::filesystem::path& p) {
return p.string<Char>();
}
template <typename Char>
void write_escaped_path(basic_memory_buffer<Char>& quoted,
const std::filesystem::path& p) {
write_escaped_string<Char>(std::back_inserter(quoted), p.string<Char>());
}
# ifdef _WIN32
template <>
inline auto get_path_string<char>(const std::filesystem::path& p) {
return to_utf8<wchar_t>(p.native(), to_utf8_error_policy::replace);
}
template <>
inline void write_escaped_path<char>(memory_buffer& quoted,
const std::filesystem::path& p) {
auto buf = basic_memory_buffer<wchar_t>();
write_escaped_string<wchar_t>(std::back_inserter(buf), p.native());
// Convert UTF-16 to UTF-8.
if (!unicode_to_utf8<wchar_t>::convert(quoted, {buf.data(), buf.size()}))
FMT_THROW(std::runtime_error("invalid utf16"));
bool valid = to_utf8<wchar_t>::convert(quoted, {buf.data(), buf.size()});
FMT_ASSERT(valid, "invalid utf16");
}
# endif
# endif // _WIN32
template <>
inline void write_escaped_path<std::filesystem::path::value_type>(
basic_memory_buffer<std::filesystem::path::value_type>& quoted,
@ -75,36 +100,59 @@ inline void write_escaped_path<std::filesystem::path::value_type>(
} // namespace detail
FMT_MODULE_EXPORT
template <typename Char>
struct formatter<std::filesystem::path, Char>
: formatter<basic_string_view<Char>> {
FMT_EXPORT
template <typename Char> struct formatter<std::filesystem::path, Char> {
private:
format_specs<Char> specs_;
detail::arg_ref<Char> width_ref_;
bool debug_ = false;
public:
FMT_CONSTEXPR void set_debug_format(bool set = true) { debug_ = set; }
template <typename ParseContext> FMT_CONSTEXPR auto parse(ParseContext& ctx) {
auto out = formatter<basic_string_view<Char>>::parse(ctx);
this->set_debug_format(false);
return out;
auto it = ctx.begin(), end = ctx.end();
if (it == end) return it;
it = detail::parse_align(it, end, specs_);
if (it == end) return it;
it = detail::parse_dynamic_spec(it, end, specs_.width, width_ref_, ctx);
if (it != end && *it == '?') {
debug_ = true;
++it;
}
return it;
}
template <typename FormatContext>
auto format(const std::filesystem::path& p, FormatContext& ctx) const ->
typename FormatContext::iterator {
auto format(const std::filesystem::path& p, FormatContext& ctx) const {
auto specs = specs_;
detail::handle_dynamic_spec<detail::width_checker>(specs.width, width_ref_,
ctx);
if (!debug_) {
auto s = detail::get_path_string<Char>(p);
return detail::write(ctx.out(), basic_string_view<Char>(s), specs);
}
auto quoted = basic_memory_buffer<Char>();
detail::write_escaped_path(quoted, p);
return formatter<basic_string_view<Char>>::format(
basic_string_view<Char>(quoted.data(), quoted.size()), ctx);
return detail::write(ctx.out(),
basic_string_view<Char>(quoted.data(), quoted.size()),
specs);
}
};
FMT_END_NAMESPACE
#endif
FMT_BEGIN_NAMESPACE
FMT_MODULE_EXPORT
FMT_EXPORT
template <typename Char>
struct formatter<std::thread::id, Char> : basic_ostream_formatter<Char> {};
FMT_END_NAMESPACE
#ifdef __cpp_lib_optional
FMT_BEGIN_NAMESPACE
FMT_MODULE_EXPORT
FMT_EXPORT
template <typename T, typename Char>
struct formatter<std::optional<T>, Char,
std::enable_if_t<is_formattable<T, Char>::value>> {
@ -148,22 +196,6 @@ FMT_END_NAMESPACE
#ifdef __cpp_lib_variant
FMT_BEGIN_NAMESPACE
FMT_MODULE_EXPORT
template <typename Char> struct formatter<std::monostate, Char> {
template <typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
return ctx.begin();
}
template <typename FormatContext>
auto format(const std::monostate&, FormatContext& ctx) const
-> decltype(ctx.out()) {
auto out = ctx.out();
out = detail::write<Char>(out, "monostate");
return out;
}
};
namespace detail {
template <typename T>
@ -197,6 +229,7 @@ auto write_variant_alternative(OutputIt out, const T& v) -> OutputIt {
}
} // namespace detail
template <typename T> struct is_variant_like {
static constexpr const bool value = detail::is_variant_like_<T>::value;
};
@ -206,7 +239,21 @@ template <typename T, typename C> struct is_variant_formattable {
detail::is_variant_formattable_<T, C>::value;
};
FMT_MODULE_EXPORT
FMT_EXPORT
template <typename Char> struct formatter<std::monostate, Char> {
template <typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
return ctx.begin();
}
template <typename FormatContext>
auto format(const std::monostate&, FormatContext& ctx) const
-> decltype(ctx.out()) {
return detail::write<Char>(ctx.out(), "monostate");
}
};
FMT_EXPORT
template <typename Variant, typename Char>
struct formatter<
Variant, Char,
@ -223,13 +270,14 @@ struct formatter<
auto out = ctx.out();
out = detail::write<Char>(out, "variant(");
try {
FMT_TRY {
std::visit(
[&](const auto& v) {
out = detail::write_variant_alternative<Char>(out, v);
},
value);
} catch (const std::bad_variant_access&) {
}
FMT_CATCH(const std::bad_variant_access&) {
detail::write<Char>(out, "valueless by exception");
}
*out++ = ')';
@ -240,7 +288,7 @@ FMT_END_NAMESPACE
#endif // __cpp_lib_variant
FMT_BEGIN_NAMESPACE
FMT_MODULE_EXPORT
FMT_EXPORT
template <typename Char> struct formatter<std::error_code, Char> {
template <typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
@ -258,7 +306,7 @@ template <typename Char> struct formatter<std::error_code, Char> {
}
};
FMT_MODULE_EXPORT
FMT_EXPORT
template <typename T, typename Char>
struct formatter<
T, Char,
@ -274,7 +322,7 @@ struct formatter<
if (it == end || *it == '}') return it;
if (*it == 't') {
++it;
with_typename_ = true;
with_typename_ = FMT_USE_TYPEID != 0;
}
return it;
}
@ -287,8 +335,9 @@ struct formatter<
if (!with_typename_)
return detail::write_bytes(out, string_view(ex.what()), spec);
#if FMT_USE_TYPEID
const std::type_info& ti = typeid(ex);
#ifdef FMT_HAS_ABI_CXA_DEMANGLE
# ifdef FMT_HAS_ABI_CXA_DEMANGLE
int status = 0;
std::size_t size = 0;
std::unique_ptr<char, decltype(&std::free)> demangled_name_ptr(
@ -327,23 +376,90 @@ struct formatter<
demangled_name_view = string_view(ti.name());
}
out = detail::write_bytes(out, demangled_name_view, spec);
#elif FMT_MSC_VERSION
# elif FMT_MSC_VERSION
string_view demangled_name_view(ti.name());
if (demangled_name_view.starts_with("class "))
demangled_name_view.remove_prefix(6);
else if (demangled_name_view.starts_with("struct "))
demangled_name_view.remove_prefix(7);
out = detail::write_bytes(out, demangled_name_view, spec);
#else
# else
out = detail::write_bytes(out, string_view(ti.name()), spec);
# endif
*out++ = ':';
*out++ = ' ';
return detail::write_bytes(out, string_view(ex.what()), spec);
#endif
out = detail::write<Char>(out, Char(':'));
out = detail::write<Char>(out, Char(' '));
out = detail::write_bytes(out, string_view(ex.what()), spec);
}
};
return out;
namespace detail {
template <typename T, typename Enable = void>
struct has_flip : std::false_type {};
template <typename T>
struct has_flip<T, void_t<decltype(std::declval<T>().flip())>>
: std::true_type {};
template <typename T> struct is_bit_reference_like {
static constexpr const bool value =
std::is_convertible<T, bool>::value &&
std::is_nothrow_assignable<T, bool>::value && has_flip<T>::value;
};
#ifdef _LIBCPP_VERSION
// Workaround for libc++ incompatibility with C++ standard.
// According to the Standard, `bitset::operator[] const` returns bool.
template <typename C>
struct is_bit_reference_like<std::__bit_const_reference<C>> {
static constexpr const bool value = true;
};
#endif
} // namespace detail
// We can't use std::vector<bool, Allocator>::reference and
// std::bitset<N>::reference because the compiler can't deduce Allocator and N
// in partial specialization.
FMT_EXPORT
template <typename BitRef, typename Char>
struct formatter<BitRef, Char,
enable_if_t<detail::is_bit_reference_like<BitRef>::value>>
: formatter<bool, Char> {
template <typename FormatContext>
FMT_CONSTEXPR auto format(const BitRef& v, FormatContext& ctx) const
-> decltype(ctx.out()) {
return formatter<bool, Char>::format(v, ctx);
}
};
FMT_EXPORT
template <typename T, typename Char>
struct formatter<std::atomic<T>, Char,
enable_if_t<is_formattable<T, Char>::value>>
: formatter<T, Char> {
template <typename FormatContext>
auto format(const std::atomic<T>& v, FormatContext& ctx) const
-> decltype(ctx.out()) {
return formatter<T, Char>::format(v.load(), ctx);
}
};
FMT_END_NAMESPACE
#ifdef __cpp_lib_atomic_flag_test
FMT_EXPORT
template <typename Char>
struct formatter<std::atomic_flag, Char>
: formatter<bool, Char> {
template <typename FormatContext>
auto format(const std::atomic_flag& v, FormatContext& ctx) const
-> decltype(ctx.out()) {
return formatter<bool, Char>::format(v.test(), ctx);
}
};
#endif // __cpp_lib_atomic_flag_test
FMT_END_NAMESPACE
#endif // FMT_STD_H_

@ -62,9 +62,9 @@ template <> struct is_char<detail::char8_type> : std::true_type {};
template <> struct is_char<char16_t> : std::true_type {};
template <> struct is_char<char32_t> : std::true_type {};
template <typename... Args>
constexpr format_arg_store<wformat_context, Args...> make_wformat_args(
const Args&... args) {
template <typename... T>
constexpr format_arg_store<wformat_context, T...> make_wformat_args(
const T&... args) {
return {args...};
}
@ -99,9 +99,9 @@ template <typename Char, FMT_ENABLE_IF(!std::is_same<Char, char>::value)>
auto vformat(basic_string_view<Char> format_str,
basic_format_args<buffer_context<type_identity_t<Char>>> args)
-> std::basic_string<Char> {
basic_memory_buffer<Char> buffer;
detail::vformat_to(buffer, format_str, args);
return to_string(buffer);
auto buf = basic_memory_buffer<Char>();
detail::vformat_to(buf, format_str, args);
return to_string(buf);
}
template <typename... T>
@ -111,10 +111,10 @@ auto format(wformat_string<T...> fmt, T&&... args) -> std::wstring {
// Pass char_t as a default template parameter instead of using
// std::basic_string<char_t<S>> to reduce the symbol size.
template <typename S, typename... Args, typename Char = char_t<S>,
template <typename S, typename... T, typename Char = char_t<S>,
FMT_ENABLE_IF(!std::is_same<Char, char>::value &&
!std::is_same<Char, wchar_t>::value)>
auto format(const S& format_str, Args&&... args) -> std::basic_string<Char> {
auto format(const S& format_str, T&&... args) -> std::basic_string<Char> {
return vformat(detail::to_string_view(format_str),
fmt::make_format_args<buffer_context<Char>>(args...));
}
@ -129,11 +129,10 @@ inline auto vformat(
return detail::vformat(loc, detail::to_string_view(format_str), args);
}
template <typename Locale, typename S, typename... Args,
typename Char = char_t<S>,
template <typename Locale, typename S, typename... T, typename Char = char_t<S>,
FMT_ENABLE_IF(detail::is_locale<Locale>::value&&
detail::is_exotic_char<Char>::value)>
inline auto format(const Locale& loc, const S& format_str, Args&&... args)
inline auto format(const Locale& loc, const S& format_str, T&&... args)
-> std::basic_string<Char> {
return detail::vformat(loc, detail::to_string_view(format_str),
fmt::make_format_args<buffer_context<Char>>(args...));
@ -150,11 +149,11 @@ auto vformat_to(OutputIt out, const S& format_str,
return detail::get_iterator(buf, out);
}
template <typename OutputIt, typename S, typename... Args,
template <typename OutputIt, typename S, typename... T,
typename Char = char_t<S>,
FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, Char>::value&&
detail::is_exotic_char<Char>::value)>
inline auto format_to(OutputIt out, const S& fmt, Args&&... args) -> OutputIt {
inline auto format_to(OutputIt out, const S& fmt, T&&... args) -> OutputIt {
return vformat_to(out, detail::to_string_view(fmt),
fmt::make_format_args<buffer_context<Char>>(args...));
}
@ -174,12 +173,12 @@ inline auto vformat_to(
}
template <
typename OutputIt, typename Locale, typename S, typename... Args,
typename OutputIt, typename Locale, typename S, typename... T,
typename Char = char_t<S>,
bool enable = detail::is_output_iterator<OutputIt, Char>::value&&
detail::is_locale<Locale>::value&& detail::is_exotic_char<Char>::value>
inline auto format_to(OutputIt out, const Locale& loc, const S& format_str,
Args&&... args) ->
T&&... args) ->
typename std::enable_if<enable, OutputIt>::type {
return vformat_to(out, loc, detail::to_string_view(format_str),
fmt::make_format_args<buffer_context<Char>>(args...));
@ -192,36 +191,36 @@ inline auto vformat_to_n(
OutputIt out, size_t n, basic_string_view<Char> format_str,
basic_format_args<buffer_context<type_identity_t<Char>>> args)
-> format_to_n_result<OutputIt> {
detail::iterator_buffer<OutputIt, Char, detail::fixed_buffer_traits> buf(out,
n);
using traits = detail::fixed_buffer_traits;
auto buf = detail::iterator_buffer<OutputIt, Char, traits>(out, n);
detail::vformat_to(buf, format_str, args);
return {buf.out(), buf.count()};
}
template <typename OutputIt, typename S, typename... Args,
template <typename OutputIt, typename S, typename... T,
typename Char = char_t<S>,
FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, Char>::value&&
detail::is_exotic_char<Char>::value)>
inline auto format_to_n(OutputIt out, size_t n, const S& fmt,
const Args&... args) -> format_to_n_result<OutputIt> {
inline auto format_to_n(OutputIt out, size_t n, const S& fmt, T&&... args)
-> format_to_n_result<OutputIt> {
return vformat_to_n(out, n, detail::to_string_view(fmt),
fmt::make_format_args<buffer_context<Char>>(args...));
}
template <typename S, typename... Args, typename Char = char_t<S>,
template <typename S, typename... T, typename Char = char_t<S>,
FMT_ENABLE_IF(detail::is_exotic_char<Char>::value)>
inline auto formatted_size(const S& fmt, Args&&... args) -> size_t {
detail::counting_buffer<Char> buf;
inline auto formatted_size(const S& fmt, T&&... args) -> size_t {
auto buf = detail::counting_buffer<Char>();
detail::vformat_to(buf, detail::to_string_view(fmt),
fmt::make_format_args<buffer_context<Char>>(args...));
return buf.count();
}
inline void vprint(std::FILE* f, wstring_view fmt, wformat_args args) {
wmemory_buffer buffer;
detail::vformat_to(buffer, fmt, args);
buffer.push_back(L'\0');
if (std::fputws(buffer.data(), f) == -1)
auto buf = wmemory_buffer();
detail::vformat_to(buf, fmt, args);
buf.push_back(L'\0');
if (std::fputws(buf.data(), f) == -1)
FMT_THROW(system_error(errno, FMT_STRING("cannot write to file")));
}

@ -18,6 +18,10 @@
# include <sys/stat.h>
# include <sys/types.h>
# ifdef _WRS_KERNEL // VxWorks7 kernel
# include <ioLib.h> // getpagesize
# endif
# ifndef _WIN32
# include <unistd.h>
# else
@ -110,9 +114,9 @@ class utf8_system_category final : public std::error_category {
public:
const char* name() const noexcept override { return "system"; }
std::string message(int error_code) const override {
system_message msg(error_code);
auto&& msg = system_message(error_code);
if (msg) {
unicode_to_utf8<wchar_t> utf8_message;
auto utf8_message = to_utf8<wchar_t>();
if (utf8_message.convert(msg)) {
return utf8_message.str();
}
@ -137,12 +141,12 @@ std::system_error vwindows_error(int err_code, string_view format_str,
void detail::format_windows_error(detail::buffer<char>& out, int error_code,
const char* message) noexcept {
FMT_TRY {
system_message msg(error_code);
auto&& msg = system_message(error_code);
if (msg) {
unicode_to_utf8<wchar_t> utf8_message;
auto utf8_message = to_utf8<wchar_t>();
if (utf8_message.convert(msg)) {
fmt::format_to(buffer_appender<char>(out), FMT_STRING("{}: {}"),
message, string_view(utf8_message));
fmt::format_to(appender(out), FMT_STRING("{}: {}"), message,
string_view(utf8_message));
return;
}
}
@ -337,9 +341,8 @@ file file::open_windows_file(wcstring_view path, int oflag) {
int fd = -1;
auto err = _wsopen_s(&fd, path.c_str(), oflag, _SH_DENYNO, default_open_mode);
if (fd == -1) {
FMT_THROW(
system_error(err, FMT_STRING("cannot open file {}"),
detail::unicode_to_utf8<wchar_t>(path.c_str()).c_str()));
FMT_THROW(system_error(err, FMT_STRING("cannot open file {}"),
detail::to_utf8<wchar_t>(path.c_str()).c_str()));
}
return file(fd);
}
@ -352,7 +355,12 @@ long getpagesize() {
GetSystemInfo(&si);
return si.dwPageSize;
# else
# ifdef _WRS_KERNEL
long size = FMT_POSIX_CALL(getpagesize());
# else
long size = FMT_POSIX_CALL(sysconf(_SC_PAGESIZE));
# endif
if (size < 0)
FMT_THROW(system_error(errno, FMT_STRING("cannot get memory page size")));
return size;

Loading…
Cancel
Save