Kernel Boot Process

This chapter describes the linux kernel boot process. Here you will see a series
of posts which describes the full cycle of the kernel loading process:

e From the bootloader to kernel - describes all stages from turning on the
computer to running the first instruction of the kernel.

o First steps in the kernel setup code - describes first steps in the kernel
setup code. You will see heap initialization, query of different parameters
like EDD, IST and etc. ..

¢ Video mode initialization and transition to protected mode - describes video
mode initialization in the kernel setup code and transition to protected
mode.

o Transition to 64-bit mode - describes preparation for transition into 64-bit
mode and details of transition.

e Kernel Decompression - describes preparation before kernel decompression
and details of direct decompression.

¢ Kernel random address randomization - describes randomization of the
Linux kernel load address.

Kernel booting process. Part 1.

From the bootloader to the kernel

If you have been reading my previous blog posts, then you can see that, for some
time now, I have been starting to get involved with low-level programming. I
have written some posts about assembly programming for x86_64 Linux and, at
the same time, I have also started to dive into the Linux kernel source code.

I have a great interest in understanding how low-level things work, how programs
run on my computer, how they are located in memory, how the kernel manages
processes and memory, how the network stack works at a low level, and many
many other things. So, I have decided to write yet another series of posts about
the Linux kernel for the x86__64 architecture.

Note that I'm not a professional kernel hacker and I don’t write code for the
kernel at work. It’s just a hobby. I just like low-level stuff, and it is interesting
for me to see how these things work. So if you notice anything confusing, or if
you have any questions/remarks, ping me on Twitter 0xAX, drop me an email
or just create an issue. I appreciate it.

All posts will also be accessible at github repo and, if you find something wrong
with my English or the post content, feel free to send a pull request.

Note that this isn’t official documentation, just learning and sharing knowledge.
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Required knowledge

¢ Understanding C code
o Understanding assembly code (AT&T syntax)

Anyway, if you are just starting to learn such tools, I will try to explain some
parts during this and the following posts. Alright, this is the end of the simple
introduction, and now we can start to dive into the Linux kernel and low-level
stuff.

I've started writing this book at the time of the 3.18 Linux kernel, and many
things might have changed since that time. If there are changes, I will update
the posts accordingly.

The Magical Power Button, What happens next?

Although this is a series of posts about the Linux kernel, we will not be starting
directly from the kernel code - at least not, in this paragraph. As soon as you
press the magical power button on your laptop or desktop computer, it starts
working. The motherboard sends a signal to the power supply device. After
receiving the signal, the power supply provides the proper amount of electricity
to the computer. Once the motherboard receives the power good signal, it tries
to start the CPU. The CPU resets all leftover data in its registers and sets up
predefined values for each of them.

The 80386 CPU and later define the following predefined data in CPU registers
after the computer resets:

IP Oxf£ff0
CS selector 0xf000
CS base 0xf£f££0000

The processor starts working in real mode. Let’s back up a little and try to
understand memory segmentation in this mode. Real mode is supported on all
x86-compatible processors, from the 8086 CPU all the way to the modern Intel
64-bit CPUs. The 8086 processor has a 20-bit address bus, which means that
it could work with a 0-OxFFFFF or 1 megabyte address space. But it only has
16-bit registers, which have a maximum address of 2716 - 1 or Oxffff (64
kilobytes).

Memory segmentation is used to make use of all the address space available.
All memory is divided into small, fixed-size segments of 65536 bytes (64 KB).
Since we cannot address memory above 64 KB with 16-bit registers, an alternate
method was devised.

An address consists of two parts: a segment selector, which has a base address,
and an offset from this base address. In real mode, the associated base address of
a segment selector is Segment Selector * 16. Thus, to get a physical address
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in memory, we need to multiply the segment selector part by 16 and add the
offset to it:

PhysicalAddress = Segment Selector * 16 + Offset

For example, if CS: IP is 0x2000:0x0010, then the corresponding physical address
will be:

>>> hex((0x2000 << 4) + 0x0010)
"0x20010"'

But, if we take the largest segment selector and offset, Oxffff:0xffff, then the
resulting address will be:

>>> hex((Oxffff << 4) + Oxffff)
'0z10ffef’

which is 65520 bytes past the first megabyte. Since only one megabyte is
accessible in real mode, 0x10ffef becomes 0x00ffef with the A20 line disabled.

Ok, now we know a little bit about real mode and memory addressing in this
mode. Let’s get back to discussing register values after reset.

The CS register consists of two parts: the visible segment selector, and the
hidden base address. While the base address is normally formed by multiplying
the segment selector value by 16, during a hardware reset the segment selector
in the CS register is loaded with 0xf000 and the base address is loaded with
0xff££0000; the processor uses this special base address until CS is changed.

The starting address is formed by adding the base address to the value in the
EIP register:

>>> 0xff£f£f0000 + OxfffO
'0zffFFFFFO"

We get Oxf££££££0, which is 16 bytes below 4GB. This point is called the Reset
vector. This is the memory location at which the CPU expects to find the first
instruction to execute after reset. It contains a jump (jmp) instruction that
usually points to the BIOS entry point. For example, if we look in the coreboot
source code (src/cpu/x86/16bit/reset16.inc), we will see:

.section
.codel6
.globl _start
_start:
.byte 0xe9
.int  _starti6bit - ( . + 2 )

.reset", "ax", Jprogbits

Here we can see the jmp instruction opcode, which is 0xe9, and its destination
address at _starti16bit - ( . + 2).
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We can also see that the reset section is 16 bytes and that is compiled to start
from Oxfffff£f0 address (src/cpu/x86/16bit/reset16.1d):

SECTIONS {
/* Trigger an error if I have an unuseable start address */
_bogus = ASSERT(_startl6bit >= O0xffff0000, "_startl6bit too low. Please report.");
_ROMTOP = Oxfffffffo;
. = _ROMTOP;
.reset . : {
*(.reset);
. = 15;
BYTE (0x00) ;
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Now the BIOS starts; after initializing and checking the hardware, the BIOS
needs to find a bootable device. A boot order is stored in the BIOS configuration,
controlling which devices the BIOS attempts to boot from. When attempting to
boot from a hard drive, the BIOS tries to find a boot sector. On hard drives
partitioned with an MBR partition layout, the boot sector is stored in the first
446 bytes of the first sector, where each sector is 512 bytes. The final two bytes
of the first sector are 0x55 and Oxaa, which designates to the BIOS that this
device is bootable.

For example:
; Note: this example is written in Intel Assembly syntax

[BITS 16]

boot:
mov al, '!'
mov ah, OxOe
mov bh, 0x00
mov bl, 0x07

int 0x10
jmp $

times 510-($-$$) db 0

db 0x55
db Oxaa
Build and run this with:

nasm -f bin boot.nasm && gemu-system-x86_64 boot
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This will instruct QEMU to use the boot binary that we just built as a disk image.
Since the binary generated by the assembly code above fulfills the requirements of
the boot sector (the origin is set to 0x7c00 and we end with the magic sequence),
QEMU will treat the binary as the master boot record (MBR) of a disk image.

You will see:

http://0i60.t{inypic.com/2qbwup0. jpg

Figure 1: Simple bootloader which prints only !

In this example, we can see that the code will be executed in 16-bit real mode
and will start at 0x7c00 in memory. After starting, it calls the 0x10 interrupt,
which just prints the ! symbol; it fills the remaining 510 bytes with zeros and
finishes with the two magic bytes Oxaa and 0x55.

You can see a binary dump of this using the objdump utility:

nasm -f bin boot.nasm
objdump -D -b binary -mi386 -Maddri16,datal6,intel boot

A real-world boot sector has code for continuing the boot process and a partition
table instead of a bunch of 0’s and an exclamation mark :) From this point
onwards, the BIOS hands over control to the bootloader.

NOTE: As explained above, the CPU is in real mode; in real mode, calculating
the physical address in memory is done as follows:

PhysicalAddress = Segment Selector * 16 + Offset

just as explained above. We have only 16-bit general purpose registers; the
maximum value of a 16-bit register is Oxffff, so if we take the largest values,
the result will be:

>>> hex((Oxffff * 16) + Oxffff)
'0z10ffef "
where 0x10ffef is equal to 1MB + 64KB - 16b. An 8086 processor (which was

the first processor with real mode), in contrast, has a 20-bit address line. Since
2720 = 1048576 is 1MB, this means that the actual available memory is 1IMB.

In general, real mode’s memory map is as follows:

0x00000000 - 0xO000003FF - Real Mode Interrupt Vector Table
0x00000400 - 0x000004FF - BIOS Data Area
0x00000500 - 0x00007BFF - Unused
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0x00007C00 - 0xO00007DFF - Our Bootloader
0x00007E00 - OxOOO9FFFF - Unused

0x000A0000 - O0xOOOBFFFF - Video RAM (VRAM) Memory
0x000B0000 - 0xO000B7777 - Monochrome Video Memory
0x000B8000 - OxOOOBFFFF - Color Video Memory
0x000C0000 - 0xOO0OC7FFF - Video ROM BIOS
0x000C8000 - OxOOOEFFFF - BIOS Shadow Area
0x000F0000 - OxOOOFFFFF - System BIOS

In the beginning of this post, I wrote that the first instruction executed by
the CPU is located at address OxFFFFFFFO, which is much larger than OxFFFFF
(IMB). How can the CPU access this address in real mode? The answer is in
the coreboot documentation:

OxFFFE_0000 - OxFFFF_FFFF: 128 kilobyte ROM mapped into address space
At the start of execution, the BIOS is not in RAM, but in ROM.

Bootloader

There are a number of bootloaders that can boot Linux, such as GRUB 2 and
syslinux. The Linux kernel has a Boot protocol which specifies the requirements
for a bootloader to implement Linux support. This example will describe GRUB
2.

Continuing from before, now that the BIOS has chosen a boot device and
transferred control to the boot sector code, execution starts from boot.img. This
code is very simple, due to the limited amount of space available, and contains
a pointer which is used to jump to the location of GRUB 2’s core image. The
core image begins with diskboot.img, which is usually stored immediately after
the first sector in the unused space before the first partition. The above code
loads the rest of the core image, which contains GRUB 2’s kernel and drivers for
handling filesystems, into memory. After loading the rest of the core image, it
executes the grub_ main function.

The grub_main function initializes the console, gets the base address for modules,
sets the root device, loads/parses the grub configuration file, loads modules, etc.
At the end of execution, the grub_main function moves grub to normal mode.
The grub_normal_execute function (from the grub-core/normal/main.c
source code file) completes the final preparations and shows a menu to select
an operating system. When we select one of the grub menu entries, the
grub_menu_execute_entry function runs, executing the grub boot command
and booting the selected operating system.

As we can read in the kernel boot protocol, the bootloader must read and fill
some fields of the kernel setup header, which starts at the 0x01f1 offset from
the kernel setup code. You may look at the boot linker script to confirm the
value of this offset. The kernel header arch/x86/boot/header.S starts from:
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.globl hdr

hdr:
setup_sects: .byte O
root_flags: .word ROOT_RDONLY

syssize: .long O
ram_size: .word O
vid_mode: .word SVGA_MODE
root_dev: .word O
boot_flag: .word OxAA55

The bootloader must fill this and the rest of the headers (which are only marked
as being type write in the Linux boot protocol, such as in this example) with
values which it has either received from the command line or calculated during
boot. (We will not go over full descriptions and explanations for all fields of the
kernel setup header now, but we shall do so when we discuss how the kernel uses
them; you can find a description of all fields in the boot protocol.)

As we can see in the kernel boot protocol, the memory will be mapped as follows
after loading the kernel:

| Protected-mode kernel |

100000  +==—===mmmmmmmmmmm e +

| I/0 memory hole |
0A0000  #-=——=m=mmmmmmmmmmomooo +

| Reserved for BIOS | Leave as much as possible unused

| Command line | (Can also be below the X+10000 mark)
X+10000 #==========mmmmm e +

| Stack/heap | For use by the kernel real-mode code.
X+08000 +---—-=——m—m—mmmmmmommoo +

| Kernel setup | The kernel real-mode code.

| Kernel boot sector | The kernel legacy boot sector.

X - - +

| Boot loader | <- Boot sector entry point 0x7C00
001000  #-=======m=mmmmmmmmmmoo +

| Reserved for MBR/BIOS |
000800  +-——————————————————— - +

| Typically used by MBR |
000600  +============mm—mmm e +

| BIOS use only |
000000  +-——————————————————— - +

So, when the bootloader transfers control to the kernel, it starts at:
X + sizeof (KernelBootSector) + 1

where X is the address of the kernel boot sector being loaded. In my case, X is
0x10000, as we can see in a memory dump:
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Figure 2: kernel first address

The bootloader has now loaded the Linux kernel into memory, filled the header
fields, and then jumped to the corresponding memory address. We can now
move directly to the kernel setup code.

The Beginning of the Kernel Setup Stage

Finally, we are in the kernel! Technically, the kernel hasn’t run yet; first, the
kernel setup part must configure stuff such as the decompressor and some memory
management related things, to name a few. After all these things are done, the
kernel setup part will decompress the actual kernel and jump to it. Execution
of the setup part starts from arch/x86/boot/header.S at _start. It is a little
strange at first sight, as there are several instructions before it.

A long time ago, the Linux kernel used to have its own bootloader. Now, however,
if you run, for example,

gemu-system-x86_64 vmlinuz-3.18-generic

then you will see:

http://0i60.t{inypic.com/r02xkz. jpg

Figure 3: Try vmlinuz in gemu

Actually, the file header.S starts with the magic number MZ (see image above),
the error message that displays and, following that, the PE header:

#ifdef CONFIG_EFI_STUB
# "MZ", MS-DOS header
.byte 0x4d

.byte 0x5a

#endif
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pe_header:
.ascii "PE"
.word O

It needs this to load an operating system with UEFI support. We won’t be
looking into its inner workings right now and will cover it in upcoming chapters.

The actual kernel setup entry point is:

// header.S line 292
.globl _start
_start:

The bootloader (grub2 and others) knows about this point (at an offset of 0x200
from MZ) and makes a jump directly to it, despite the fact that header.S starts
from the .bstext section, which prints an error message:

//

// arch/x86/boot/setup.1ld

//

. =0; // current position

.bstext : { *(.bstext) } // put .bstext section to position 0
.bsdata : { *(.bsdata) }

The kernel setup entry point is:

.globl _start

_start:

.byte 0Oxeb

.byte start_of_setup-1f
1:

//

// rest of the header

//

Here we can see a jmp instruction opcode (Oxeb) that jumps to the
start_of_setup-1f point. In Nf notation, 2f, for example, refers to the local
label 2:; in our case, it is the label 1 that is present right after the jump, and it
contains the rest of the setup header. Right after the setup header, we see the
.entrytext section, which starts at the start_of_setup label.

This is the first code that actually runs (aside from the previous jump instructions,
of course). After the kernel setup part receives control from the bootloader, the
first jmp instruction is located at the 0x200 offset from the start of the kernel
real mode, i.e., after the first 512 bytes. This can be seen in both the Linux
kernel boot protocol and the grub2 source code:
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segment = grub_linux_real_target >> 4;
state.gs = state.fs = state.es = state.ds = state.ss = segment;
state.cs = segment + 0x20;

This means that segment registers will have the following values after kernel
setup starts:

gs = fs = es = ds = ss = 0x10000
cs = 0x10200

In my case, the kernel is loaded at 0x10000 address.
After the jump to start_of_setup, the kernel needs to do the following:

o Make sure that all segment register values are equal
e Set up a correct stack, if needed

e Set up bss

e Jump to the C code in main.c

Let’s look at the implementation.

Aligning the Segment Registers

First of all, the kernel ensures that the ds and es segment registers point to the
same address. Next, it clears the direction flag using the c1d instruction:

movw %ds, %hax
movw %hax, %hes
cld

As T wrote earlier, grub2 loads kernel setup code at address 0x10000 by default
and cs at 0x10200 because execution doesn’t start from the start of file, but
from the jump here:

_start:
.byte Oxeb
.byte start_of_setup-1f

which is at a 512 byte offset from 4d 5a. We also need to align cs from 0x10200
to 0x10000, as well as all other segment registers. After that, we set up the
stack:

pushw  %ds
pushw  $6f
lretw

which pushes the value of ds to the stack, followed by the address of the 6 label
and executes the lretw instruction. When the lretw instruction is called, it
loads the address of label 6 into the instruction pointer register and loads cs
with the value of ds. Afterward, ds and cs will have the same values.
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Stack Setup

Almost all of the setup code is in preparation for the C language environment in
real mode. The next step is checking the ss register value and making a correct
stack if ss is wrong:

movw Y%ss, %hdx
cmpw hax, hdx
movw %Sp, hdx
je 2f

This can lead to 3 different scenarios:

« ss has a valid value 0x1000 (as do all the other segment registers beside
cs)

e ss is invalid and the CAN_USE_HEAP flag is set (see below)

¢ ss is invalid and the CAN_USE_HEAP flag is not set (see below)

Let’s look at all three of these scenarios in turn:
« ss has a correct address (0x1000). In this case, we go to label 2:

2: andw $~3, %dx

jnz 3f

movw $oxfffc, %dx
3: movw hax, %ss

movzwl %dx, %esp

sti

Here we set the alignment of dx (which contains the value of sp as given by the
bootloader) to 4 bytes and a check for whether or not it is zero. If it is zero,
we put Oxfffc (4 byte aligned address before the maximum segment size of 64
KB) in dx. If it is not zero, we continue to use the value of sp given by the
bootloader (0xf7f4 in my case). After this, we put the value of ax into ss, which
stores the correct segment address of 0x1000 and sets up a correct sp. We now
have a correct stack:

http://0ib8.tinypic.com/16iwcis. jpg

Figure 4: stack

o In the second scenario, (ss != ds). First, we put the value of _end (the
address of the end of the setup code) into dx and check the loadflags
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header field using the testb instruction to see whether we can use the
heap. loadflags is a bitmask header which is defined as:

#define LOADED HIGH (1<<0)
#define QUIET_FLAG (1<<5)
#define KEEP_SEGMENTS  (1<<6)
#define CAN_USE_HEAP (1<<7)

and, as we can read in the boot protocol:

Field name: loadflags
This field is a bitmask.

Bit 7 (write): CAN_USE_HEAP
Set this bit to 1 to indicate that the value entered in the
heap_end_ptr is valid. If this field is clear, some setup code
functionality will be disabled.

If the CAN_USE_HEAP bit is set, we put heap_end_ptr into dx (which points to
_end) and add STACK_SIZE (minimum stack size, 1024 bytes) to it. After this,
if dx is not carried (it will not be carried, dx = _end + 1024), jump to label 2
(as in the previous case) and make a correct stack.

http://0i62.tinypic.com/dr7bbw. jpg

Figure 5: stack

e When CAN_USE_HEAP is not set, we just use a minimal stack from _end to
_end + STACK_SIZE:

http://0i60.t{inypic.com/28w051y. jpg

Figure 6: minimal stack
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BSS Setup

The last two steps that need to happen before we can jump to the main C code
are setting up the BSS area and checking the “magic” signature. First, signature
checking;:

cmpl $0x5abaaabb, setup_sig
jne setup_bad

This simply compares the setup_ sig with the magic number 0x5a5aaab5. If
they are not equal, a fatal error is reported.

If the magic number matches, knowing we have a set of correct segment registers
and a stack, we only need to set up the BSS section before jumping into the C
code.

The BSS section is used to store statically allocated, uninitialized data. Linux
carefully ensures this area of memory is first zeroed using the following code:

movw $__bss_start, %di
movw $_end+3, Ycx
xorl fheax, heax

subw %di, %cx

shrw $2, %ex
rep; stosl

First, the _ bss_start address is moved into di. Next, the _end + 3 address
(43 - aligns to 4 bytes) is moved into cx. The eax register is cleared (using a
xor instruction), and the bss section size (cx-di) is calculated and put into cx.
Then, cx is divided by four (the size of a ‘word’), and the stosl instruction is
used repeatedly, storing the value of eax (zero) into the address pointed to by
di, automatically increasing di by four, repeating until cx reaches zero). The
net effect of this code is that zeros are written through all words in memory
from __bss_start to _end:

http://0ib9.t{inypic.com/29m2eyr. jpg

Figure 7: bss

Jump to main

That’s all - we have the stack and BSS, so we can jump to the main() C function:
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calll main

The main() function is located in arch/x86/boot/main.c. You can read about
what this does in the next part.

Conclusion

This is the end of the first part about Linux kernel insides. If you have questions
or suggestions, ping me on Twitter 0xAX, drop me an email, or just create an
issue. In the next part, we will see the first C code that executes in the Linux
kernel setup, the implementation of memory routines such as memset, memcpy,
earlyprintk, early console implementation and initialization, and much more.

Please note that English is not my first language and I am really sorry
for any inconvenience. If you find any mistakes please send me PR
to linux-insides.

Links

o Intel 80386 programmer’s reference manual 1986
e Minimal Boot Loader for Intel® Architecture
o 8086

o 80386

¢ Reset vector

e Real mode

e Linux kernel boot protocol

e coreboot developer manual

o Ralf Brown’s Interrupt List

o Power supply

e Power good signal

Kernel booting process. Part 2.

First steps in the kernel setup

We started to dive into the linux kernel’s insides in the previous part and saw
the initial part of the kernel setup code. We stopped at the first call to the main
function (which is the first function written in C) from arch/x86/boot/main.c.

In this part, we will continue to research the kernel setup code and go over *
what protected mode is, * the transition into it, * the initialization of the heap
and the console, * memory detection, CPU validation and keyboard initialization
* and much much more.
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So, Let’s go ahead.

Protected mode

Before we can move to the native Intel64 Long Mode, the kernel must switch
the CPU into protected mode.

What is protected mode? Protected mode was first added to the x86 architecture
in 1982 and was the main mode of Intel processors from the 80286 processor
until Intel 64 and long mode came.

The main reason to move away from Real mode is that there is very limited
access to the RAM. As you may remember from the previous part, there are only
220 bytes or 1 Megabyte, sometimes even only 640 Kilobytes of RAM available
in the Real mode.

Protected mode brought many changes, but the main one is the difference in
memory management. The 20-bit address bus was replaced with a 32-bit address
bus. It allowed access to 4 Gigabytes of memory vs the 1 Megabyte in real mode.
Also, paging support was added, which you can read about in the next sections.

Memory management in Protected mode is divided into two, almost independent
parts:

e Segmentation

o Paging
Here we will only talk about segmentation. Paging will be discussed in the next
sections.

As you can read in the previous part, addresses consist of two parts in real mode:

o Base address of the segment
o Offset from the segment base

And we can get the physical address if we know these two parts by:
PhysicalAddress = Segment Selector * 16 + Offset

Memory segmentation was completely redone in protected mode. There are no
64 Kilobyte fixed-size segments. Instead, the size and location of each segment
is described by an associated data structure called the Segment Descriptor. The
segment descriptors are stored in a data structure called the Global Descriptor
Table (GDT).

The GDT is a structure which resides in memory. It has no fixed place in the
memory so, its address is stored in the special GDTR register. Later we will see
how the GDT is loaded in the Linux kernel code. There will be an operation for
loading it into memory, something like:

lgdt gdt
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where the 1gdt instruction loads the base address and limit(size) of the global
descriptor table to the GDTR register. GDTR is a 48-bit register and consists of
two parts:

o the size(16-bit) of the global descriptor table;
o the address(32-bit) of the global descriptor table.

As mentioned above the GDT contains segment descriptors which describe
memory segments. Each descriptor is 64-bits in size. The general scheme of a
descriptor is:

63 56 51 48 45 39 32
| | IBI 1Al I 11 IOIEIWIAI |
| BASE 31:24 |G|/ILIV| LIMIT |PIDPL|IS| TYPE | BASE 23:16 |
| | ID | L | 19:16 | | ! 1 lc
|-
31 16 15 0
| |
BASE 15:0 | LIMIT 15:0 |

| |

|

Don’t worry, I know it looks a little scary after real mode, but it’s easy. For
example LIMIT 15:0 means that bits 0-15 of Limit are located at the beginning
of the Descriptor. The rest of it is in LIMIT 19:16, which is located at bits 48-51
of the Descriptor. So, the size of Limit is 0-19 i.e 20-bits. Let’s take a closer
look at it:

1. Limit[20-bits] is split between bits 0-15 and 48-51. It defines the
length_of_segment - 1. It depends on the G(Granularity) bit.

o if G (bit 55) is 0 and the segment limit is 0, the size of the segment is 1
Byte

e if Gis 1 and the segment limit is 0, the size of the segment is 4096 Bytes

e if Gis 0 and the segment limit is Oxfffff, the size of the segment is 1
Megabyte

e if Gis 1 and the segment limit is Oxfffff, the size of the segment is 4
Gigabytes

So, what this means is * if G is 0, Limit is interpreted in terms of 1 Byte and the
maximum size of the segment can be 1 Megabyte. * if G is 1, Limit is interpreted
in terms of 4096 Bytes = 4 KBytes = 1 Page and the maximum size of the
segment can be 4 Gigabytes. Actually, when G is 1, the value of Limit is shifted
to the left by 12 bits. So, 20 bits 4+ 12 bits = 32 bits and 232 = 4 Gigabytes.

2. Base[32-bits] is split between bits 16-31, 32-39 and 56-63. It defines the
physical address of the segment’s starting location.
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3. Type/Attribute[5-bits] is represented by bits 40-44. It defines the type of
segment and how it can be accessed.

o The S flag at bit 44 specifies the descriptor type. If S is 0 then this segment
is a system segment, whereas if S is 1 then this is a code or data segment
(Stack segments are data segments which must be read/write segments).

To determine if the segment is a code or data segment, we can check its Ex(bit
43) Attribute (marked as 0 in the above diagram). If it is 0, then the segment is
a Data segment, otherwise, it is a code segment.

A segment can be of one of the following types:

| Type Field | Descriptor Type | Description

| —mmmmm e | == | —mmmmm
| Decimal |

lo E W A | I

| 0 0 0 0 0 | Data | Read-Only

| 1 0 0 0 1 | Data | Read-Only, accessed

| 2 0 0 1 0 | Data | Read/Write

| 3 0 0 1 1 | Data | Read/Write, accessed

| 4 0 1 0 O | Data | Read-Only, expand-down

| 5 0 1 0 1 | Data | Read-Only, expand-down, accessed

| 6 0 1 1 0 | Data | Read/Write, expand-down

| 7 0 1 1 1 | Data | Read/Write, expand-down, accessed
lc R A | I

| 8 1 0 0 0 | Code | Execute-Only

| 9 1 0 0 1 | Code | Execute-Only, accessed

| 10 1 0 1 0 | Code | Execute/Read

| 11 1 0 1 1 | Code | Execute/Read, accessed

| 12 1 1 0 0 | Code | Execute-Only, conforming

| 14 1 1 0 1| Code | Execute-Only, conforming, accessed
| 13 1 1 1 0 | Code | Execute/Read, conforming

| 15 1 1 1 1 | Code | Execute/Read, conforming, accessed

As we can see the first bit(bit 43) is 0 for a data segment and 1 for a code
segment. The next three bits (40, 41, 42) are either EWA(Expansion Writable
Accessible) or CRA( Conforming Readable Accessible). * if E(bit 42) is 0, expand
up, otherwise, expand down. Read more here. * if W(bit 41)(for Data Segments)
is 1, write access is allowed, and if it is 0, the segment is read-only. Note that
read access is always allowed on data segments. * A(bit 40) controls whether the
segment can be accessed by the processor or not. * C(bit 43) is the conforming
bit(for code selectors). If C is 1, the segment code can be executed from a lower
level privilege (e.g. user) level. If C is 0, it can only be executed from the same
privilege level. * R(bit 41) controls read access to code segments; when it is 1,
the segment can be read from. Write access is never granted for code segments.

4. DPL[2-bits] (Descriptor Privilege Level) comprises the bits 45-46. It
defines the privilege level of the segment. It can be 0-3 where 0 is the most
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privileged level.

5. The P flag(bit 47) indicates if the segment is present in memory or not.
If P is 0, the segment will be presented as invalid and the processor will
refuse to read from this segment.

6. AVL flag(bit 52) - Available and reserved bits. It is ignored in Linux.

7. The L flag(bit 53) indicates whether a code segment contains native 64-bit
code. If it is set, then the code segment executes in 64-bit mode.

8. The D/B flag(bit 54) (Default/Big flag) represents the operand size i.e
16/32 bits. If set, operand size is 32 bits. Otherwise, it is 16 bits.

Segment registers contain segment selectors as in real mode. However, in pro-
tected mode, a segment selector is handled differently. Each Segment Descriptor
has an associated Segment Selector which is a 16-bit structure:

| Index | TI | RPL |

Where, * Index stores the index number of the descriptor in the GDT. *
TI(Table Indicator) indicates where to search for the descriptor. If it is 0 then
the descriptor is searched for in the Global Descriptor Table(GDT). Otherwise,
it will be searched for in the Local Descriptor Table(LDT). * And RPL contains
the Requester’s Privilege Level.

Every segment register has a visible and a hidden part. * Visible - The Segment
Selector is stored here. * Hidden - The Segment Descriptor (which contains the
base, limit, attributes & flags) is stored here.

The following steps are needed to get a physical address in protected mode:

e The segment selector must be loaded in one of the segment registers.

e The CPU tries to find a segment descriptor at the offset GDT address +
Index from the selector and then loads the descriptor into the hidden part
of the segment register.

o If paging is disabled, the linear address of the segment, or its physical
address, is given by the formula: Base address (found in the descriptor
obtained in the previous step) + Offset.

Schematically it will look like this:
The algorithm for the transition from real mode into protected mode is:

e Disable interrupts

¢ Describe and load the GDT with the 1gdt instruction

Set the PE (Protection Enable) bit in CRO (Control Register 0)
e Jump to protected mode code
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Figure 8: linear address

We will see the complete transition to protected mode in the linux kernel in the
next part, but before we can move to protected mode, we need to do some more
preparations.

Let’s look at arch/x86/boot/main.c. We can see some routines there which
perform keyboard initialization, heap initialization, etc... Let’s take a look.

Copying boot parameters into the “zeropage”

We will start from the main routine in “main.c”. The first function which is
called in main is copy_boot_params(void). It copies the kernel setup header
into the corresponding field of the boot_params structure which is defined in
the file arch/x86/include/uapi/asm/bootparam.h.

The boot_params structure contains the struct setup_header hdr field. This
structure contains the same fields as defined in the linux boot protocol and is filled
by the boot loader and also at kernel compile/build time. copy_boot_params
does two things:

1. It copies hdr from header.S to the boot_params structure in setup_header
field

2. It updates the pointer to the kernel command line if the kernel was loaded
with the old command line protocol.

Note that it copies hdr with the memcpy function, defined in the copy.S source
file. Let’s have a look inside:

GLOBAL (memcpy)
pushw  %si
pushw  %di
movw Y%hax, %hdi
movw %dx, %hsi
pushw  Y%cx
shrw $2, %ex
rep; movsl
popw %hex
andw $3, %ex
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rep; movsb

popw %di

popw %si

retl
ENDPROC (memcpy)

Yeah, we just moved to C code and now assembly again :) First of all, we
can see that memcpy and other routines which are defined here, start and
end with the two macros: GLOBAL and ENDPROC. GLOBAL is described in
arch/x86/include/asm/linkage.h which defines the globl directive and its label.
ENDPROC is described in include/linux/linkage.h and marks the name symbol as
a function name and ends with the size of the name symbol.

The implementation of memcpy is simple. At first, it pushes values from the si and
di registers to the stack to preserve their values because they will change during
the memcpy. As we can see in the REALMODE_CFLAGS in arch/x86/Makefile, the
kernel build system uses the -mregparm=3 option of GCC, so functions get the
first three parameters from ax, dx and cx registers. Calling memcpy looks like
this:

memcpy (&boot_params.hdr, &hdr, sizeof hdr);

So, * ax will contain the address of boot_params.hdr * dx will contain the
address of hdr * cx will contain the size of hdr in bytes.

memcpy puts the address of boot_params.hdr into di and saves cx on the stack.
After this it shifts the value right 2 times (or divides it by 4) and copies four
bytes from the address at si to the address at di. After this, we restore the size
of hdr again, align it by 4 bytes and copy the rest of the bytes from the address
at si to the address at di byte by byte (if there is more). Now the values of si
and di are restored from the stack and the copying operation is finished.

Console initialization

After hdr is copied into boot_params.hdr, the next step is to ini-
tialize the console by calling the console_init function, defined in
arch/x86/boot/early serial console.c.

It tries to find the earlyprintk option in the command line and if the search
was successful, it parses the port address and baud rate of the serial port and
initializes the serial port. The value of the earlyprintk command line option
can be one of these:

¢ serial,0x3{8,115200
o serial,ttyS0,115200
e ttyS0,115200

After serial port initialization we can see the first output:

20


https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/linkage.h
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/linkage.h
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/early_serial_console.c

if (cmdline_find_option_bool("debug"))
puts("early console in setup code\n");

The definition of puts is in tty.c. As we can see it prints character by char-
acter in a loop by calling the putchar function. Let’s look into the putchar
implementation:

void __attribute__((section(".inittext"))) putchar(int ch)

{
if (ch == '\n'")
putchar('\r');

bios_putchar(ch);

if (early_serial_base != 0)
serial_putchar(ch);
}
__attribute__((section(".inittext"))) means that this code will be in the

.inittext section. We can find it in the linker file setup.ld.

First of all, putchar checks for the \n symbol and if it is found, prints \r before.
After that it prints the character on the VGA screen by calling the BIOS with
the 0x10 interrupt call:

static void __attribute__((section(".inittext"))) bios_putchar(int ch)
{

struct biosregs ireg;

initregs(&ireg) ;

ireg.bx = 0x0007;

ireg.cx = 0x0001;

ireg.ah = 0x0Oe;

ireg.al = ch;

intcall(0x10, &ireg, NULL);

}

Here initregs takes the biosregs structure and first fills biosregs with zeros
using the memset function and then fills it with register values.

memset (reg, 0, sizeof *reg);
reg->eflags |= X86_EFLAGS_CF;
reg->ds = ds(Q);
reg->es = ds();
reg->fs = £fs();
reg->gs = gsQ;

Let’s look at the implementation of memset:

GLOBAL (memset)
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pushw  %di

movw %hax, %hdi

movzbl %dl, Y%eax

imull  $0x01010101,%eax
pushw  Ycx

shrw $2, %ex

rep; stosl

popw %hex

andw $3, hex

rep; stosb

popw %di
retl
ENDPROC (memset)

As you can read above, it uses the same calling conventions as the memcpy
function, which means that the function gets its parameters from the ax, dx and
cx registers.

The implementation of memset is similar to that of memcpy. It saves the value of
the di register on the stack and puts the value ofax, which stores the address of
the biosregs structure, into di . Next is the movzbl instruction, which copies
the value of d1 to the lower 2 bytes of the eax register. The remaining 2 high
bytes of eax will be filled with zeros.

The next instruction multiplies eax with 0x01010101. It needs to because
memset will copy 4 bytes at the same time. For example, if we need to fill
a structure whose size is 4 bytes with the value 0x7 with memset, eax will
contain the 0x00000007. So if we multiply eax with 0x01010101, we will get
0x07070707 and now we can copy these 4 bytes into the structure. memset uses
the rep; stosl instruction to copy eax into es:di.

The rest of the memset function does almost the same thing as memcpy.

After the biosregs structure is filled with memset, bios_putchar calls the 0x10
interrupt which prints a character. Afterwards it checks if the serial port was
initialized or not and writes a character there with serial putchar and inb/outb
instructions if it was set.

Heap initialization
After the stack and bss section have been prepared in header.S (see previous
part), the kernel needs to initialize the heap with the init_heap function.

First of all init_heap checks the CAN_USE_HEAP flag from the loadflags struc-
ture in the kernel setup header and calculates the end of the stack if this flag
was set:
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char *stack_end;

if (boot_params.hdr.loadflags & CAN_USE_HEAP) {
asm("leal %P1(%%esp),%0"
"=r" (stack_end) : "i" (-STACK_SIZE));

or in other words stack_end = esp - STACK_SIZE.
Then there is the heap_end calculation:
heap_end = (char *)((size_t)boot_params.hdr.heap_end_ptr + 0x200);

which means heap_end_ptr or _end + 512 (0x200h). The last check is whether
heap_end is greater than stack_end. If it is then stack_end is assigned to
heap_end to make them equal.

Now the heap is initialized and we can use it using the GET_HEAP method. We
will see what it is used for, how to use it and how it is implemented in the next
posts.

CPU validation

The next step as we can see is cpu validation through the validate_cpu function
from arch/x86 /boot /cpu.c.

It calls the check_cpu function and passes cpu level and required cpu level to it
and checks that the kernel launches on the right cpu level.

check_cpu(&cpu_level, &req_level, &err_flags);
if (cpu_level < req_level) {

return -1;
}
check_cpu checks the CPU’s flags, the presence of long mode in the case of

x86__64(64-bit) CPU, checks the processor’s vendor and makes preparations for
certain vendors like turning off SSE4+SSE2 for AMD if they are missing, etc.

Memory detection

The next step is memory detection through the detect_memory function.
detect_memory basically provides a map of available RAM to the CPU. It uses
different programming interfaces for memory detection like 0xe820, 0xe801 and
0x88. We will see only the implementation of the 0xE820 interface here.

Let’s look at the implementation of the detect_memory_e820 function from
the arch/x86/boot/memory.c source file. First of all, the detect_memory_e820
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function initializes the biosregs structure as we saw above and fills registers
with special values for the 0xe820 call:

initregs(&ireg) ;

ireg.ax = 0xe820;
ireg.cx = sizeof buf;
ireg.edx SMAP;

ireg.di (size_t)&buf;

e ax contains the number of the function (0xe820 in our case)

e cx contains the size of the buffer which will contain data about the memory

e edx must contain the SMAP magic number

e es:di must contain the address of the buffer which will contain memory
data

e ebx has to be zero.

Next is a loop where data about the memory will be collected. It starts with a
call to the 0x15 BIOS interrupt, which writes one line from the address allocation
table. For getting the next line we need to call this interrupt again (which we do
in the loop). Before the next call ebx must contain the value returned previously:

intcall(0x15, &ireg, &oreg);
ireg.ebx = oreg.ebx;

Ultimately, this function collects data from the address allocation table and
writes this data into the e820_entry array:

o start of memory segment

¢ size of memory segment

o type of memory segment (whether the particular segment is usable or
reserved )

You can see the result of this in the dmesg output, something like:

0.000000] e820: BIOS-provided physical RAM map:

.000000] BIOS-e820: [mem 0x0000000000000000-0x000000000009fbff] usable
.000000] BIOS-e820: [mem 0x000000000009fc00-0x000000000009ffff] reserved
.000000] BIOS-€820: [mem 0x00000000000£0000-0x00000000000fffff] reserved
.000000] BIOS-€820: [mem 0x0000000000100000-0x000000003ffdffff] usable
.000000] BIOS-e820: [mem 0x000000003£ffe0000-0x000000003fffffff] reserved
.000000] BIOS-e820: [mem 0x00000000fffc0000-0x00000000ffffffff] reserved

e B B B B B e W e |
O O O O OO

Next, we may see a call to the set_bios_mode function. As we may see, this
function is implemented only for the x86_64 mode:

static void set_bios_mode(void)

{
#ifdef CONFIG_X86_64
struct biosregs ireg;

initregs(&ireg) ;
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ireg.ax = Oxec00;

ireg.bx = 2;

intcall(0x15, &ireg, NULL);
#endif
}

The set_bios_mode function executes the 0x15 BIOS interrupt to tell the BIOS
that long mode (if bx == 2) will be used.

Keyboard initialization

The next step is the initialization of the keyboard with a call to the
keyboard_init() function. At first keyboard_init initializes registers using
the initregs function. It then calls the 0x16 interrupt to query the status of
the keyboard.

initregs(&ireg) ;

ireg.ah = 0x02; /* Get keyboard status */
intcall(0x16, &ireg, &oreg);
boot_params.kbd_status = oreg.al;

After this it calls 0x16 again to set the repeat rate and delay.

ireg.ax = 0x0305; /* Set keyboard repeat rate */
intcall(0x16, &ireg, NULL);

Querying

The next couple of steps are queries for different parameters. We will not dive
into details about these queries but we will get back to them in later parts. Let’s
take a short look at these functions:

The first step is getting Intel SpeedStep information by calling the query_ist
function. It checks the CPU level and if it is correct, calls 0x15 to get the info
and saves the result to boot_params.

Next, the query__apm__bios function gets Advanced Power Management infor-
mation from the BIOS. query_apm_bios calls the 0x15 BIOS interruption too,
but with ah = 0x53 to check APM installation. After 0x15 finishes executing,
the query_apm_bios functions check the PM signature (it must be 0x504d), the
carry flag (it must be 0 if APM supported) and the value of the cx register (if it’s
0x02, the protected mode interface is supported).

Next, it calls 0x15 again, but with ax = 0x5304 to disconnect the APM in-
terface and connect the 32-bit protected mode interface. In the end, it fills
boot_params.apm_bios_info with values obtained from the BIOS.
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Note that query_apm_bios will be executed only if the CONFIG_APM or
CONFIG_APM_MODULE compile time flag was set in the configuration file:

#if defined (CONFIG_APM) || defined(CONFIG_APM_MODULE)
query_apm_bios();
#endif

The last is the query_edd function, which queries Enhanced Disk Drive infor-
mation from the BIOS. Let’s look at how query_edd is implemented.

First of all, it reads the edd option from the kernel’s command line and if it was
set to off then query_edd just returns.

If EDD is enabled, query_edd goes over BIOS-supported hard disks and queries
EDD information in the following loop:

for (devno = 0x80; devno < 0x80+EDD_MBR_SIG_MAX; devno++) {
if ('get_edd_info(devno, &ei) && boot_params.eddbuf_entries < EDDMAXNR) {
memcpy (edp, &ei, sizeof ei);
edp++;
boot_params.eddbuf_entries++;

}

where 0x80 is the first hard drive and the value of the EDD_MBR_SIG_MAX macro
is 16. It collects data into an array of edd_ info structures. get_edd_info checks
that EDD is present by invoking the 0x13 interrupt with ah as 0x41 and if EDD
is present, get_edd_info again calls the 0x13 interrupt, but with ah as 0x48
and si containing the address of the buffer where EDD information will be
stored.

Conclusion

This is the end of the second part about the insides of the Linux kernel. In the
next part, we will see video mode setting and the rest of the preparations before
the transition to protected mode and directly transitioning into it.

If you have any questions or suggestions write me a comment or ping me at
twitter.

Please note that English is not my first language, And I am really
sorry for any inconvenience. If you find any mistakes please send me
a PR to linux-insides.
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e Protected mode

e Protected mode
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e Nice explanation of CPU Modes with code
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o EDD specification

e TLDP documentation for Linux Boot Process (old)
e Previous Part

Kernel booting process. Part 3.

Video mode initialization and transition to protected mode

This is the third part of the Kernel booting process series. In the previous
part, we stopped right before the call to the set_video routine from main.c. In
this part, we will look at:

e video mode initialization in the kernel setup code,
e the preparations made before switching into protected mode,
e the transition to protected mode

NOTE If you don’t know anything about protected mode, you can find some
information about it in the previous part. Also, there are a couple of links which
can help you.

As I wrote above, we will start from the set_video function which is defined in
the arch/x86/boot/video.c source code file. We can see that it starts by first
getting the video mode from the boot_params.hdr structure:

ul6é mode = boot_params.hdr.vid_mode;

which we filled in the copy_boot_params function (you can read about it in the
previous post). vid_mode is an obligatory field which is filled by the bootloader.
You can find information about it in the kernel boot protocol:

Offset Proto Name Meaning
/Size
01FA/2 ALL vid_mode Video mode control

As we can read from the linux kernel boot protocol:
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vga=<mode>
<mode> here is either an integer (in C notation, either
decimal, octal, or hexadecimal) or one of the strings
"normal" (meaning OxFFFF), "ext" (meaning OxFFFE) or "ask"
(meaning OxFFFD). This value should be entered into the
vid_mode field, as it is used by the kernel before the command
line is parsed.

So we can add the vga option to the grub (or another bootloader’s) configuration
file and it will pass this option to the kernel command line. This option can
have different values as mentioned in the description. For example, it can be an
integer number OxFFFD or ask. If you pass ask to vga, you will see a menu like
this:

http://0ib9.t{inypic.com/ejcz81.jpg

Figure 9: video mode setup menu

which will ask to select a video mode. We will look at its implementation, but
before diving into the implementation we have to look at some other things.

Kernel data types

Earlier we saw definitions of different data types like u16 etc. in the kernel setup
code. Let’s look at a couple of data types provided by the kernel:

Type char short int long u8 wul6 w32 u64
Size 1 2 4 8 1 2 4 8

If you read the source code of the kernel, you’ll see these very often and so it
will be good to remember them.

Heap API

After we get vid_mode from boot_params.hdr in the set_video function, we
can see the call to the RESET_HEAP function. RESET_HEAP is a macro which is
defined in boot.h. It is defined as:

#define RESET_HEAP() ((void *)( HEAP = _end ))
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If you have read the second part, you will remember that we initialized the heap
with the init_heap function. We have a couple of utility functions for managing
the heap which are defined in boot.h. They are:

#define RESET HEAP()

As we saw just above, it resets the heap by setting the HEAP variable to _end,
where _end is just extern char _endl[];

Next is the GET_HEAP macro:

#define GET_HEAP(type, n) \
((type *)__get_heap(sizeof (type),__alignof__(type),(n)))

for heap allocation. It calls the internal function __get_heap with 3 parameters:

o the size of the datatype to be allocated for
e __alignof__(type) specifies how variables of this type are to be aligned
e 1 specifies how many items to allocate

The implementation of __get_heap is:

static inline char *__get_heap(size_t s, size_t a, size_t n)
{

char *tmp;

HEAP = (char *) (((size_t)HEAP+(a-1)) & ~(a-1));
tmp = HEAP;
HEAP += s*n;
return tmp;

}
and we will further see its usage, something like:
saved.data = GET_HEAP(ul6, saved.x * saved.y);

Let’s try to understand how __get_heap works. We can see here that HEAP
(which is equal to _end after RESET_HEAP () ) is assigned the address of the aligned
memory according to the a parameter. After this we save the memory address
from HEAP to the tmp variable, move HEAP to the end of the allocated block and
return tmp which is the start address of allocated memory.

And the last function is:

static inline bool heap_free(size_t n)

{
return (int) (heap_end - HEAP) >= (int)n;
}

which subtracts value of the HEAP pointer from the heap_end (we calculated it
in the previous part) and returns 1 if there is enough memory available for n.

That’s all. Now we have a simple API for heap and can setup video mode.
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Set up video mode

Now we can move directly to video mode initialization. = We stopped
at the RESET_HEAP() call in the set_video function. Next is the
call to store_mode_params which stores video mode parameters in the
boot_params.screen_info structure which is defined in include /uapi/linux/screen__info.h.

If we look at the store_mode_params function, we can see that it starts with a
call to the store_cursor_position function. As you can understand from the
function name, it gets information about the cursor and stores it.

First of all, store_cursor_position initializes two variables which have type
biosregs with AH = 0x3, and calls the 0x10 BIOS interruption. After the
interruption is successfully executed, it returns row and column in the DL and
DH registers. Row and column will be stored in the orig_x and orig_y fields of
the boot_params.screen_info structure.

After store_cursor_position is executed, the store_video_mode func-
tion will be called. It just gets the current video mode and stores it in
boot_params.screen_info.orig_video_mode.

After this, store_mode_params checks the current video mode and sets the
video_segment. After the BIOS transfers control to the boot sector, the follow-
ing addresses are for video memory:

0xB000:0x0000 32 Kb Monochrome Text Video Memory
0xB800:0x0000 32 Kb  Color Text Video Memory

So we set the video_segment variable to 0xb000 if the current video mode is
MDA, HGC, or VGA in monochrome mode and to 0xb800 if the current video
mode is in color mode. After setting up the address of the video segment, the
font size needs to be stored in boot_params.screen_info.orig_video_points
with:

set_fs(0);
font_size = rdfs16(0x485);
boot_params.screen_info.orig_video_points = font_size;

First of all, we put 0 in the FS register with the set_fs function. We already
saw functions like set_fs in the previous part. They are all defined in
boot.h. Next, we read the value which is located at address 0x485 (this
memory location is used to get the font size) and save the font size in
boot_params.screen_info.orig_video_points.

rdfs16(0x44a);
(adapter == ADAPTER_CGA) 7 25 : rdfs8(0x484)+1;

X
y

Next, we get the amount of columns by address 0x44a and rows by address
0x484 and store them in boot_params.screen_info.orig_video_cols and

30


https://github.com/0xAX/linux/blob/0e271fd59fe9e6d8c932309e7a42a4519c5aac6f/include/uapi/linux/screen_info.h
https://github.com/0xAX/linux/blob/0a07b238e5f488b459b6113a62e06b6aab017f71/arch/x86/boot/boot.h

boot_params.screen_info.orig_video_lines. After this, execution of
store_mode_params is finished.

Next we can see the save_screen function which just saves the contents of
the screen to the heap. This function collects all the data which we got in the
previous functions (like the rows and columns, and stuff) and stores it in the
saved_screen structure, which is defined as:

static struct saved_screen {
int x, y;
int curx, cury;
ulé *data;

} saved;

It then checks whether the heap has free space for it with:

if ('heap_free(saved.x*saved.y*sizeof (ul6)+512))
return;

and allocates space in the heap if it is enough and stores saved_screen in it.

The next call is probe_cards(0) from arch/x86/boot/video-mode.c. It goes
over all video_ cards and collects the number of modes provided by the cards.
Here is the interesting part, we can see the loop:

for (card = video_cards; card < video_cards_end; card++) {
/* collecting number of modes here */

3

but video_cards is not declared anywhere. The answer is simple: every video
mode presented in the x86 kernel setup code has a definition that looks like this:

static __videocard video_vga = {

.card_name = "VGA",
.probe = vga_probe,
.set_mode = vga_set_mode,

};

where __videocard is a macro:

#define __videocard struct card_info __attribute__((used,section(".videocards")))
which means that the card_info structure:

struct card_info {
const char *card_name;
int (*set_mode) (struct mode_info *mode) ;
int (*probe) (void);
struct mode_info *modes;
int nmodes;
int unsafe;
ul6é xmode_first;
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ul6 xmode_n;

};

is in the .videocards segment. Let’s look in the arch/x86/boot/setup.ld linker
script, where we can find:

.videocards : {
video_cards = .;
*(.videocards)
video_cards_end = .;

}

It means that video_cards is just a memory address and all card_info struc-
tures are placed in this segment. It means that all card_info structures are
placed between video_cards and video_cards_end, so we can use a loop to go
over all of it. After probe_cards executes we have a bunch of structures like
static __videocard video_vga with the nmodes (the number of video modes)
filled in.

After the probe_cards function is done, we move to the main loop in the
set_video function. There is an infinite loop which tries to set up the video
mode with the set_mode function or prints a menu if we passed vid_mode=ask
to the kernel command line or if video mode is undefined.

The set_mode function is defined in video-mode.c and gets only one parameter,
mode, which is the number of video modes (we got this value from the menu or
in the start of setup_video, from the kernel setup header).

The set_mode function checks the mode and calls the raw_set_mode func-
tion. The raw_set_mode calls the selected card’s set_mode function, i.e.
card->set_mode(struct mode_info*). We can get access to this function
from the card_info structure. Every video mode defines this structure with
values filled depending upon the video mode (for example for vga it is the
video_vga.set_mode function. See the above example of the card_info
structure for vga). video_vga.set_mode is vga_set_mode, which checks the
vga mode and calls the respective function:

static int vga_set_mode(struct mode_info *mode)

{

vga_set_basic_mode();

force_x = mode->x;
force_y = mode—->y;

switch (mode->mode) {

case VIDEQO_80x25:
break;

case VIDEQO_8POINT:
vga_set_8font();
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break;

case VIDEQO_80x43:
vga_set_80x43Q) ;
break;

case VIDEQ_80x28:
vga_set_14font();
break;

case VIDEQO_80x30:
vga_set_80x300);
break;

case VIDEO_80x34:
vga_set_80x34(Q) ;
break;

case VIDEQO_80x60:
vga_set_80x60(Q) ;
break;

}

return O;

3

Every function which sets up video mode just calls the 0x10 BIOS interrupt
with a certain value in the AH register.

After we have set the video mode, we pass it to boot_params.hdr.vid_mode.

Next, vesa_store_edid is called. This function simply stores the EDID
(Extended Display Identification Data) information for kernel use. After this
store_mode_params is called again. Lastly, if do_restore is set, the screen is
restored to an earlier state.

Having done this, the video mode setup is complete and now we can switch to
the protected mode.

Last preparation before transition into protected mode

We can see the last function call - go_to_protected_mode - in main.c. As the
comment says: Do the last things and invoke protected mode, so let’s
see what these last things are and switch into protected mode.

The go_to_protected_mode function is defined in arch/x86/boot/pm.c. It
contains some functions which make the last preparations before we can jump
into protected mode, so let’s look at it and try to understand what it does and
how it works.

First is the call to the realmode_switch_hook function in go_to_protected_mode.
This function invokes the real mode switch hook if it is present and disables
NMI. Hooks are used if the bootloader runs in a hostile environment. You
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can read more about hooks in the boot protocol (see ADVANCED BOOT
LOADER HOOKS).

The realmode_switch hook presents a pointer to the 16-bit real mode far
subroutine which disables non-maskable interrupts. After the realmode_switch
hook (it isn’t present for me) is checked, Non-Maskable Interrupts(NMI) is
disabled:

asm volatile("cli");
outb(0x80, 0x70); /* Disable NMI */
io_delayQ);

At first, there is an inline assembly statement with a c1i instruction which clears
the interrupt flag (IF). After this, external interrupts are disabled. The next
line disables NMI (non-maskable interrupt).

An interrupt is a signal to the CPU which is emitted by hardware or software.
After getting such a signal, the CPU suspends the current instruction sequence,
saves its state and transfers control to the interrupt handler. After the interrupt
handler has finished it’s work, it transfers control back to the interrupted
instruction. Non-maskable interrupts (NMI) are interrupts which are always
processed, independently of permission. They cannot be ignored and are typically
used to signal for non-recoverable hardware errors. We will not dive into the
details of interrupts now but we will be discussing them in the coming posts.

Let’s get back to the code. We can see in the second line that we are writing the
byte 0x80 (disabled bit) to 0x70 (the CMOS Address register). After that, a call
to the io_delay function occurs. io_delay causes a small delay and looks like:

static inline void io_delay(void)
{

const ul6 DELAY_PORT = 0x80;

asm volatile("outb %%al,’%0" : : "dN" (DELAY_PORT));
}

To output any byte to the port 0x80 should delay exactly 1 microsecond. So we
can write any value (the value from AL in our case) to the 0x80 port. After this
delay the realmode_switch_hook function has finished execution and we can
move to the next function.

The next function is enable_a20, which enables the A20 line. This function is
defined in arch/x86/boot/a20.c and it tries to enable the A20 gate with different
methods. The first is the a20_test_short function which checks if A20 is
already enabled or not with the a20_test function:

static int a20_test(int loops)

{
int ok = 0;
int saved, ctr;
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set_£s(0x0000) ;
set_gs(Oxffff);

saved = ctr = rdfs32(A20_TEST_ADDR) ;

while (loops--) {
wrfs32(++ctr, A20 TEST_ADDR);
io_delay(); /* Serialize and make delay constant */
ok = rdgs32(A20_TEST_ADDR+0x10) ~ ctr;
if (ok)
break;

}

wrfs32(saved, A20_TEST_ADDR);
return ok;

}

First of all, we put 0x0000 in the FS register and Oxffff in the GS register.
Next, we read the value at the address A20_TEST_ADDR (it is 0x200) and put
this value into the variables saved and ctr.

Next, we write an updated ctr value into fs:gs with the wrfs32 function, then
delay for 1ms, and then read the value from the GS register into the address
A20_TEST_ADDR+0x10, if it’s not zero we’ve already enabled the A20 line. If A20
is disabled, we try to enable it with a different method which you can find in
a20.c. For example, it can be done with a call to the 0x15 BIOS interrupt with
AH=0x2041.

If the enabled_a20 function finished with a failure, print an error message and
call the function die. You can remember it from the first source code file where
we started - arch/x86/boot /header.S:

die:

hlt

jmp die

.size die, .-die
After the A20 gate is successfully enabled, the reset_coprocessor function is
called:

outb(0, 0xf0);
outb (0, 0xfl);

This function clears the Math Coprocessor by writing 0 to 0xf0 and then resets
it by writing 0 to Oxf1.

After this, the mask_all_interrupts function is called:

outb(0xff, Oxal); /* Mask all interrupts on the secondary PIC */
outb(0xfb, 0x21); /* Mask all but cascade on the primary PIC */
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This masks all interrupts on the secondary PIC (Programmable Interrupt Con-
troller) and primary PIC except for IRQ2 on the primary PIC.

And after all of these preparations, we can see the actual transition into protected
mode.

Set up the Interrupt Descriptor Table

Now we set up the Interrupt Descriptor table (IDT) in the setup_idt function:

static void setup_idt(void)
{
static const struct gdt_ptr null_idt = {0, 0};
asm volatile("1lidtl %0" : : "m" (null_idt));
}

which sets up the Interrupt Descriptor Table (describes interrupt handlers and
etc.). For now, the IDT is not installed (we will see it later), but now we just
load the IDT with the 1idtl instruction. null_idt contains the address and
size of the IDT, but for now they are just zero. null_idt is a gdt_ptr structure,
it is defined as:

struct gdt_ptr {
ul6 len;
u32 ptr;
} __attribute__((packed));

where we can see the 16-bit length(len) of the IDT and the 32-bit pointer to it
(More details about the IDT and interruptions will be seen in the next posts).
__attribute__((packed)) means that the size of gdt_ptr is the minimum
required size. So the size of the gdt_ptr will be 6 bytes here or 48 bits. (Next
we will load the pointer to the gdt_ptr to the GDTR register and you might
remember from the previous post that it is 48-bits in size).

Set up Global Descriptor Table

Next is the setup of the Global Descriptor Table (GDT). We can see the
setup_gdt function which sets up the GDT (you can read about it in the post
Kernel booting process. Part 2.). There is a definition of the boot_gdt array in
this function, which contains the definition of the three segments:

static const u64 boot_gdt[] __attribute__((aligned(16))) = {
[GDT_ENTRY_BOOT_CS] = GDT_ENTRY(0xcO9b, 0, Oxfffff),
[GDT_ENTRY_BOOT_DS] = GDT_ENTRY(0xc093, 0, Oxfffff),
[GDT_ENTRY_BOOT_TSS] = GDT_ENTRY(0x0089, 4096, 103),

};
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for code, data and TSS (Task State Segment). We will not use the task state
segment for now, it was added there to make Intel VT happy as we can see
in the comment line (if you're interested you can find the commit which de-
scribes it - here). Let’s look at boot_gdt. First of all note that it has the
__attribute__((aligned(16))) attribute. It means that this structure will
be aligned by 16 bytes.

Let’s look at a simple example:

#include <stdio.h>
struct aligned {
int a;

}__attribute__((aligned(16)));

struct nonaligned {

int b;

s

int main(void)

{
struct aligned a;
struct nonaligned na;
printf("Not aligned - %zu \n", sizeof(na));
printf("Aligned - Y%zu \n", sizeof(a));
return O;

}

Technically a structure which contains one int field must be 4 bytes in size, but
an aligned structure will need 16 bytes to store in memory:

$ gcc test.c -o test && test
Not aligned - 4
Aligned - 16

The GDT_ENTRY BOOT_CS has index - 2 here, GDT_ENTRY_BOOT DS is
GDT_ENTRY_BOOT_CS + 1 and etc. It starts from 2, because the first is
a mandatory null descriptor (index - 0) and the second is not used (index - 1).

GDT_ENTRY is a macro which takes flags, base, limit and builds a GDT entry. For
example, let’s look at the code segment entry. GDT_ENTRY takes the following
values:

e base- 0
o limit - Ox{fffff
o flags - 0xc09b
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What does this mean? The segment’s base address is 0, and the limit (size of
segment) is - Oxf££f (1 MB). Let’s look at the flags. It is 0xc09b and it will be:

1100 0000 1001 1011

in binary. Let’s try to understand what every bit means. We will go through all
bits from left to right:

e 1-(G) granularity bit
e 1- (D) if 0 16-bit segment; 1 = 32-bit segment
e 0- (L) executed in 64-bit mode if 1

e 0- (AVL) available for use by system software

e 0000 - 4-bit length 19:16 bits in the descriptor

o 1- (P) segment presence in memory

e 00 - (DPL) - privilege level, 0 is the highest privilege
e 1-(S) code or data segment, not a system segment
e 101 - segment type execute/read/

e 1 - accessed bit

You can read more about every bit in the previous post or in the Intel® 64 and
TA-32 Architectures Software Developer’s Manuals 3A.

After this we get the length of the GDT with:

gdt.len = sizeof (boot_gdt)-1;

We get the size of boot_gdt and subtract 1 (the last valid address in the GDT).
Next we get a pointer to the GDT with:

gdt.ptr = (u32)&boot_gdt + (ds() << 4);

Here we just get the address of boot_gdt and add it to the address of the data
segment left-shifted by 4 bits (remember we’re in real mode now).

Lastly we execute the 1gdtl instruction to load the GDT into the GDTR register:
asm volatile("1lgdtl %0" : : "m" (gdt));

Actual transition into protected mode

This is the end of the go_to_protected_mode function. We loaded the IDT and
GDT, disabled interrupts and now can switch the CPU into protected mode.
The last step is calling the protected_mode_jump function with two parameters:

protected_mode_jump(boot_params.hdr.code32_start, (u32)&boot_params + (ds() << 4));
which is defined in arch/x86/boot/pmjump.S.
It takes two parameters:

e address of the protected mode entry point
¢ address of boot_params
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Let’s look inside protected_mode_jump. As I wrote above, you can find it in
arch/x86/boot/pmjump.S. The first parameter will be in the eax register and
the second one is in edx.

First of all, we put the address of boot_params in the esi register and the
address of the code segment register cs (0x1000) in bx. After this, we shift
bx by 4 bits and add it to the memory location labeled 2 (which is bx << 4 +
in_pm32, the physical address to jump after transitioned to 32-bit mode) and
jump to label 1. Next we put the data segment and the task state segment in
the cx and di registers with:

movw $__BOOT_DS, J%cx
movw $__BOOT_TSS, %di

As you can read above GDT_ENTRY_BOOT_CS has index 2 and every GDT entry
is 8 byte, so CS will be 2 * 8 = 16, __BOOT_DS is 24 etc.

Next, we set the PE (Protection Enable) bit in the CRO control register:

movl %cr0, %edx
orb $X86_CRO_PE, %dl
movl Y%edx, %cr0

and make a long jump to protected mode:

.byte 0x66, Oxea
2: .long in_pm32
.word __BOOT_CS

where:

e 0x66 is the operand-size prefix which allows us to mix 16-bit and 32-bit
code

e Oxea - is the jump opcode

e in_pm32 is the segment offset

e __BOOT_CS is the code segment we want to jump to.

After this we are finally in protected mode:

.code32
.section ".text32","ax"

Let’s look at the first steps taken in protected mode. First of all we set up the
data segment with:

movl %ecx, %ds
movl Y%ecx, hes
movl %ecx, %fs
movl hecx, hgs
movl %ecx, %ss
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If you paid attention, you can remember that we saved $__B0OOT_DS in the cx
register. Now we fill it with all segment registers besides cs (cs is already
__B0OT_CS).

And setup a valid stack for debugging purposes:
addl %ebx, Yesp

The last step before the jump into 32-bit entry point is to clear the general
purpose registers:

xorl Y%ecx, hecx
xorl %hedx, %edx
xorl %ebx, %ebx
xorl %ebp, %ebp
xorl Y%edi, %hedi

And jump to the 32-bit entry point in the end:
jmpl *jeax

Remember that eax contains the address of the 32-bit entry (we passed it as the
first parameter into protected_mode_jump).

That’s all. We're in protected mode and stop at its entry point. We will see
what happens next in the next part.

Conclusion

This is the end of the third part about linux kernel insides. In the next part, we
will look at the first steps we take in protected mode and transition into long
mode.

If you have any questions or suggestions write me a comment or ping me at
twitter.

Please note that English is not my first language, And I am really
sorry for any inconvenience. If you find any mistakes, please send me
a PR with corrections at linux-insides.

Links

L] VGA

« VESA BIOS Extensions
o Data structure alignment
¢ Non-maskable interrupt
e A20

e GCC designated inits

o GCC type attributes
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e Previous part

Kernel booting process. Part 4.

Transition to 64-bit mode

This is the fourth part of the Kernel booting process where we will see first
steps in protected mode, like checking that CPU supports long mode and SSE,
paging, initializes the page tables and at the end we will discuss the transition
to long mode.

NOTE: there will be much assembly code in this part, so if you are
not familiar with that, you might want to consult a book about it

In the previous part we stopped at the jump to the 32-bit entry point in
arch/x86/boot /pmjump.S:

jmpl *xfeax

You will recall that eax register contains the address of the 32-bit entry point.
We can read about this in the linux kernel x86 boot protocol:

When using bzImage, the protected-mode kernel was relocated to 0x100000

Let’s make sure that it is true by looking at the register values at the 32-bit
entry point:

eax 0x100000 1048576
ecx 0x0 0

edx 0x0 0

ebx 0x0 0

esp 0x1ff5c Ox1ffbc
ebp 0x0 0x0

esi 0x14470 83056
edi 0x0 0

eip 0x100000 0x100000
eflags 0x46 [ PF ZF 1]
cs 0x10 16

ss 0x18 24

ds 0x18 24

es 0x18 24

fs 0x18 24

gs 0x18 24

We can see here that cs register contains - 0x10 (as you may remember from
the previous part, this is the second index in the Global Descriptor Table),
eip register contains 0x100000 and the base address of all segments including
the code segment are zero.
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So we can get the physical address, it will be 0:0x100000 or just 0x100000, as
specified by the boot protocol. Now let’s start with the 32-bit entry point.

32-bit entry point

We can find the definition of the 32-bit entry point in the arch/x86/boot/compressed /head_ 64.S
assembly source code file:

__HEAD
.code32
ENTRY (startup_32)

ENDPROC (startup_32)

First of all, why the directory is named compressed? Actually bzimage is a
gzipped vmlinux + header + kernel setup code. We saw the kernel setup
code in all of the previous parts. So, the main goal of the head_64.S is to
prepare for entering long mode, enter into it and then decompress the kernel.
We will see all of the steps up to kernel decompression in this part.

You may find two files in the arch/x86/boot/compressed directory:

e head 32.S
e head 64.S

but we will consider only head_64.S source code file because, as
you may remember, this book is only x86_64 related; Let’s look at
arch/x86 /boot /compressed /Makefile. We can find the following make target
here:

vmlinux-objs-y := $(obj)/vmlinux.lds $(obj)/head_$(BITS).o $(obj)/misc.o \
$(obj)/string.o $(obj)/cmdline.o \
$(obj) /piggy.o $(obj)/cpuflags.o

Take a look on the $(obj) /head_$(BITS) .o.

This means that we will select which file to link based on what $(BITS) is set
to, either head_32.0 or head_64.0. The $(BITS) variable is defined elsewhere
in arch/x86/Makefile based on the kernel configuration:

ifeq ($(CONFIG_X86_32),y)
BITS := 32

else
BITS := 64
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endif

Now we know where to start, so let’s do it.

Reload the segments if needed

As indicated above, we start in the arch/x86/boot/compressed/head 64.S as-
sembly source code file. First we see the definition of the special section attribute
before the startup_32 definition:

__HEAD
.code32
ENTRY (startup_32)

The __HEAD is macro which is defined in include/linux/init.h header file and
expands to the definition of the following section:

#define __HEAD .section ".head.text","ax"

with .head.text name and ax flags. In our case, these flags show us that this
section is executable or in other words contains code. We can find definition of
this section in the arch/x86/boot/compressed/vmlinux.lds.S linker script:

SECTIONS
{
. = 0;
.head.text : {
_head = . ;
HEAD _TEXT
_ehead = . ;
}
}

If you are not familiar with the syntax of GNU LD linker scripting language, you
can find more information in the documentation. In short, the . symbol is a
special variable of linker - location counter. The value assigned to it is an offset
relative to the offset of the segment. In our case, we assign zero to location
counter. This means that our code is linked to run from the 0 offset in memory.
Moreover, we can find this information in comments:

Be careful parts of head_64.S assume startup_32 is at address O.

Ok, now we know where we are, and now is the best time to look inside the
startup_32 function.
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In the beginning of the startup_32 function, we can see the cld instruction
which clears the DF bit in the flags register. When direction flag is clear, all
string operations like stos, scas and others will increment the index registers
esi or edi. We need to clear direction flag because later we will use strings
operations for clearing space for page tables, etc.

After we have cleared the DF bit, next step is the check of the KEEP_SEGMENTS
flag from loadflags kernel setup header field. If you remember we already saw
loadflags in the very first part of this book. There we checked CAN_USE_HEAP
flag to get ability to use heap. Now we need to check the KEEP_SEGMENTS flag.
This flag is described in the linux boot protocol documentation:

Bit 6 (write): KEEP_SEGMENTS
Protocol: 2.07+
- If 0, reload the segment registers in the 32bit entry point.
- If 1, do not reload the segment registers in the 32bit entry point.
Assume that Ycs %ds %ss Jes are all set to flat segments with
a base of 0 (or the equivalent for their environment).

So, if the KEEP_SEGMENTS bit is not set in the loadflags, we need to set ds, ss
and es segment registers to the index of data segment with base 0. That we do:

testb $(1 << 6), BP_loadflags(esi)

jnz 1f
cli

movl $(__BOOT_DS), %eax
movl %eax, %ds

movl %eax, hes

movl %eax, %ss

Remember that the __BOOT_DS is 0x18 (index of data segment in the Global
Descriptor Table). If KEEP_SEGMENTS is set, we jump to the nearest 1f label
or update segment registers with __BOOT_DS if it is not set. It is pretty easy,
but here is one interesting moment. If you’ve read the previous part, you
may remember that we already updated these segment registers right after we
switched to protected mode in arch/x86/boot/pmjump.S. So why do we need to
care about values of segment registers again? The answer is easy. The Linux
kernel also has a 32-bit boot protocol and if a bootloader uses it to load the
Linux kernel all code before the startup_32 will be missed. In this case, the
startup_32 will be the first entry point of the Linux kernel right after the
bootloader and there are no guarantees that segment registers will be in known
state.

After we have checked the KEEP_SEGMENTS flag and put the correct value to the
segment registers, the next step is to calculate the difference between where we
loaded and compiled to run. Remember that setup.1d.S contains following
definition: . = 0 at the start of the .head.text section. This means that the
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code in this section is compiled to run from 0 address. We can see this in
objdump output:

arch/x86/boot/compressed/vmlinux: file format elf64-x86-64

Disassembly of section .head.text:

0000000000000000 <startup_32>:
0: fc cld
1: f6 86 11 02 00 00 40 testb $0x40,0x211(Y%rsi)

The objdump util tells us that the address of the startup_32 is 0 but actually
it’s not so. Our current goal is to know where actually we are. It is pretty simple
to do in long mode because it support rip relative addressing, but currently we
are in protected mode. We will use common pattern to know the address of the
startup_32. We need to define a label and make a call to this label and pop
the top of the stack to a register:

call label
label: pop %reg

After this, a jreg register will contain the address of a label. Let’s look at the
similar code which searches address of the startup_32 in the Linux kernel:

leal (BP_scratch+4) (%esi), %esp
call 1f

1: popl %ebp
subl $1b, %ebp

As you remember from the previous part, the esi register contains the address
of the boot_ params structure which was filled before we moved to the protected
mode. The boot_params structure contains a special field scratch with offset
Ox1led. These four bytes field will be temporary stack for call instruction. We
are getting the address of the scratch field 4+ 4 bytes and putting it in the esp
register. We add 4 bytes to the base of the BP_scratch field because, as just
described, it will be a temporary stack and the stack grows from top to down
in x86_64 architecture. So our stack pointer will point to the top of the stack.
Next, we can see the pattern that I've described above. We make a call to the
1f label and put the address of this label to the ebp register because we have
return address on the top of stack after the call instruction will be executed.
So, for now we have an address of the 1f label and now it is easy to get address
of the startup_32. We just need to subtract address of label from the address
which we got from the stack:

startup_32 (0x0) oo +
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1f (0x0 + 1f offset) +---—-—--—-——-——————-—— + %ebp - real physical address
| |
| |

The startup_32 is linked to run at address 0x0 and this means that 1f has
the address 0x0 + offset to 1f, approximately 0x21 bytes. The ebp register
contains the real physical address of the 1f label. So, if we subtract 1f from the
ebp we will get the real physical address of the startup_32. The Linux kernel
boot protocol describes that the base of the protected mode kernel is 0x100000.
We can verify this with gdb. Let’s start the debugger and put breakpoint to
the 1f address, which is 0x100021. If this is correct we will see 0x100021 in the
ebp register:

$ gdb

(gdb)$ target remote :1234
Remote debugging using :1234
0x0000£££f0 in 7?7 ()

(gdb)$ br *0x100022
Breakpoint 1 at 0x100022
(gdb)$ ¢

Continuing.

Breakpoint 1, 0x00100022 in 77 ()

(gdb)$ i r

eax 0x18 0x18

ecx 0x0 0x0

edx 0x0 0x0

ebx 0x0 0x0

esp 0x144a8 0x144a8

ebp 0x100021 0x100021
esi 0x142c0 0x142c0

edi 0x0 0x0

eip 0x100022 0x100022
eflags 0x46 [ PF ZF ]

cs 0x10 0x10

ss 0x18 0x18

ds 0x18 0x18

es 0x18 0x18

fs 0x18 0x18

gs 0x18 0x18
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If we execute the next instruction, subl $1b, %ebp, we will see:

(gdb) nexti

ebp 0x100000 0x100000

Ok, that’s true. The address of the startup_32 is 0x100000. After we know
the address of the startup_32 label, we can prepare for the transition to long
mode. Our next goal is to setup the stack and verify that the CPU supports
long mode and SSE.

Stack setup and CPU verification

We could not setup the stack while we did not know the address of the startup_32
label. We can imagine the stack as an array and the stack pointer register esp
must point to the end of this array. Of course, we can define an array in our
code, but we need to know its actual address to configure the stack pointer in a
correct way. Let’s look at the code:

movl $boot_stack_end, %eax
addl %ebp, %eax
movl %heax, hesp

The boot_stack_end label, defined in the same arch/x86/boot /compressed /head  64.S
assembly source code file and located in the .bss section:

.bss

.balign 4
boot_heap:

.fill BOOT_HEAP_SIZE, 1, O
boot_stack:

.fill BOOT_STACK_SIZE, 1, O
boot_stack_end:

First of all, we put the address of boot_stack_end into the eax register, so
the eax register contains the address of boot_stack_end where it was linked,
which is 0x0 + boot_stack_end. To get the real address of boot_stack_end,
we need to add the real address of the startup_32. As you remember, we have
found this address above and put it to the ebp register. In the end, the register
eax will contain real address of the boot_stack_end and we just need to put to
the stack pointer.

After we have set up the stack, next step is CPU verification. As we are going to
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execute transition to the long mode, we need to check that the CPU supports
long mode and SSE. We will do it by the call of the verify_cpu function:

call verify_cpu
testl  eax, %eax
jnz no_longmode

This function defined in the arch/x86/kernel/verify_cpu.S assembly file and just
contains a couple of calls to the cpuid instruction. This instruction is used for
getting information about the processor. In our case, it checks long mode and
SSE support and returns 0 on success or 1 on fail in the eax register.

If the value of the eax is not zero, we jump to the no_longmode label which just
stops the CPU by the call of the hlt instruction while no hardware interrupt
will not happen:

no_longmode:
1:
hlt
jmp 1b

If the value of the eax register is zero, everything is ok and we are able to
continue.

Calculate relocation address

The next step is calculating relocation address for decompression if needed.
First, we need to know what it means for a kernel to be relocatable. We
already know that the base address of the 32-bit entry point of the Linux kernel
is 0x100000, but that is a 32-bit entry point. The default base address of
the Linux kernel is determined by the value of the CONFIG_PHYSICAL_START
kernel configuration option. Its default value is 0x1000000 or 16 MB. The main
problem here is that if the Linux kernel crashes, a kernel developer must have a
rescue kernel for kdump which is configured to load from a different address.
The Linux kernel provides special configuration option to solve this problem:
CONFIG_RELOCATABLE. As we can read in the documentation of the Linux kernel:

This builds a kernel image that retains relocation information
so it can be loaded someplace besides the default 1MB.

Note: If CONFIG_RELOCATABLE=y, then the kernel runs from the address
it has been loaded at and the compile time physical address
(CONFIG_PHYSICAL_START) is used as the minimum location.

In simple terms, this means that the Linux kernel with the same configu-
ration can be booted from different addresses. Technically, this is done by
compiling the decompressor as position independent code. If we look at
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arch/x86 /boot /compressed /Makefile, we will see that the decompressor is
indeed compiled with the -fPIC flag:

KBUILD_CFLAGS += -fno-strict-aliasing —-fPIC

When we are using position-independent code an address is obtained by adding
the address field of the command and the value of the program counter. We
can load code which uses such addressing from any address. That’s why we
had to get the real physical address of startup_32. Now let’s get back to the
Linux kernel code. Our current goal is to calculate an address where we can
relocate the kernel for decompression. Calculation of this address depends on
CONFIG_RELOCATABLE kernel configuration option. Let’s look at the code:

#ifdef CONFIG_RELOCATABLE
movl %ebp, %ebx

movl BP_kernel_alignment (%esi), %eax
decl Yheax
addl fheax, %ebx
notl fheax
andl %eax, %ebx
cmpl $LOAD_PHYSICAL_ADDR, %ebx
jge 1f
#endif

movl $LOAD_PHYSICAL_ADDR, %ebx

addl $z_extract_offset, %ebx

Remember that the value of the ebp register is the physical address of the
startup_32 label. If the CONFIG_RELOCATABLE kernel configuration option is
enabled during kernel configuration, we put this address in the ebx register,
align it to a multiple of 2MB and compare it with the LOAD_PHYSICAL_ADDR value.
The LOAD_PHYSICAL_ADDR macro is defined in the arch/x86/include/asm/boot.h
header file and it looks like this:

#define LOAD PHYSICAL_ADDR ((CONFIG_PHYSICAL START \
+ (CONFIG_PHYSICAL ALIGN - 1)) \
& ~(CONFIG_PHYSICAL_ALIGN - 1))

As we can see it just expands to the aligned CONFIG_PHYSICAL_ALIGN value which
represents the physical address of where to load the kernel. After comparison
of the LOAD_PHYSICAL_ADDR and value of the ebx register, we add the offset
from the startup_32 where to decompress the compressed kernel image. If the
CONFIG_RELOCATABLE option is not enabled during kernel configuration, we just
put the default address where to load kernel and add z_extract_offset to it.

After all of these calculations, we will have ebp which contains the address where
we loaded it and ebx set to the address of where kernel will be moved after
decompression. But that is not the end. The compressed kernel image should
be moved to the end of the decompression buffer to simplify calculations where
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kernel will be located later. For this:

movl BP_init_size(%esi), %eax
subl $_end, ‘eax
addl %heax, %ebx

we put value from the boot_params.BP_init_size (or kernel setup header value
from the hdr.init_size) to the eax register. The BP_init_size contains larger
value between compressed and uncompressed vmlinux. Next we subtract address
of the _end symbol from this value and add the result of subtraction to ebx
register which will stores base address for kernel decompression.

Preparation before entering long mode

When we have the base address where we will relocate the compressed kernel
image, we need to do one last step before we can transition to 64-bit mode. First,
we need to update the Global Descriptor Table with 64-bit segments because an
relocatable kernel may be runned at any address below 512G:

addl %ebp, gdt+2(%ebp)
lgdt gdt (%ebp)

Here we adjust base address of the Global Descriptor table to the address
where we actually loaded and load the Global Descriptor Table with the
lgdt instruction.

To understand the magic with gdt offsets we need to look at the definition of
the Global Descriptor Table. We can find its definition in the same source
code file:

.data
gdt:
.word gdt_end - gdt
.long gdt
.word O
.quad  0x00cf9a000000ffff /* __KERNEL32_CS */
.quad  0x00af9a000000ffff /* __KERNEL_CS */
.quad  0x00cf92000000ffff /* __KERNEL_DS */
.quad  0x0080890000000000 /* TS descriptor */
.quad  0x0000000000000000 /* TS continued */
gdt_end:

We can see that it is located in the .data section and contains five descriptors:
the first is 32-bit descriptor for kernel code segment, 64-bit kernel segment,
kernel data segment and two task descriptors.

We already loaded the Global Descriptor Table in the previous part, and
now we're doing almost the same here, but descriptors with CS.L = 1 and CS.D
= 0 for execution in 64 bit mode. As we can see, the definition of the gdt starts
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from two bytes: gdt_end - gdt which represents the last byte in the gdt table
or table limit. The next four bytes contains base address of the gdt.

After we have loaded the Global Descriptor Table with 1gdt instruction, we
must enable PAE mode by putting the value of the cr4 register into eax, setting
5 bit in it and loading it again into cré4:

movl Y%ecrd, Yeax
orl $X86_CR4_PAE, Y%eax
movl Yeax, %hcrd

Now we are almost finished with all preparations before we can move into 64-bit
mode. The last step is to build page tables, but before that, here is some
information about long mode.

Long mode

The Long mode is the native mode for x86_ 64 processors. First, let’s look at
some differences between x86_64 and the x86.

The 64-bit mode provides features such as:

e New 8 general purpose registers from r8 to ri5 + all general purpose
registers are 64-bit now;

e 64-bit instruction pointer - RIP;

e New operating mode - Long mode;

e 64-Bit Addresses and Operands;

o RIP Relative Addressing (we will see an example of it in the next parts).

Long mode is an extension of legacy protected mode. It consists of two sub-modes:

e 64-bit mode;
e compatibility mode.

To switch into 64-bit mode we need to do following things:

e Enable PAE;

e Build page tables and load the address of the top level page table into the
cr3 register;

e Enable EFER.LME;

o Enable paging.

We already enabled PAE by setting the PAE bit in the cr4 control register. Our
next goal is to build the structure for paging. We will see this in next paragraph.

Early page table initialization

So, we already know that before we can move into 64-bit mode, we need to
build page tables, so, let’s look at the building of early 4G boot page tables.
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NOTE: I will not describe the theory of virtual memory here. If you
need to know more about it, see links at the end of this part.

The Linux kernel uses 4-level paging, and we generally build 6 page tables:

e One PML4 or Page Map Level 4 table with one entry;
e One PDP or Page Directory Pointer table with four entries;
o Four Page Directory tables with a total of 2048 entries.

Let’s look at the implementation of this. First of all, we clear the buffer for the
page tables in memory. Every table is 4096 bytes, so we need clear 24 kilobyte
buffer:

leal pgtable(Y%ebx), %edi

xorl Yeax, %heax

movl $(BOOT_INIT_PGT_SIZE/4), Y%ecx
rep stosl

We put the address of pgtable plus ebx (remember that ebx contains the
address to relocate the kernel for decompression) in the edi register, clear the
eax register and set the ecx register to 6144.

The rep stosl instruction will write the value of the eax to edi, increase value
of the edi register by 4 and decrease the value of the ecx register by 1. This
operation will be repeated while the value of the ecx register is greater than
zero. That’s why we put 6144 or BOOT_INIT_PGT_SIZE/4 in ecx.

The pgtable is defined at the end of arch/x86/boot/compressed/head__64.S
assembly file and is:

.section ".pgtable","a",@nobits
.balign 4096

pgtable:
.fill BOOT_PGT_SIZE, 1, O

As we can see, it is located in the .pgtable section and its size depends on the
CONFIG_X86_VERBOSE_BOOTUP kernel configuration option:

# ifdef CONFIG_X86_VERBOSE_BOOTUP

# define BOOT_PGT_SIZE (19%4096)

# else /* !CONFIG_X86_VERBOSE_BOOTUP */

# define BOOT_PGT_SIZE (17*4096)

# endif

# else /* !CONFIG_RANDOMIZE BASE */

# define BOOT_PGT_SIZE BOOT_INIT_PGT_SIZE
# endif

After we have got buffer for the pgtable structure, we can start to build the
top level page table - PML4 - with:

leal pgtable + 0(%ebx), %edi
leal 0x1007 (%hedi), %eax
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movl %eax, 0(%hedi)

Here again, we put the address of the pgtable relative to ebx or in other words
relative to address of the startup_32 to the edi register. Next, we put this
address with offset 0x1007 in the eax register. The 0x1007 is 4096 bytes which
is the size of the PML4 plus 7. The 7 here represents flags of the PML4 entry. In
our case, these flags are PRESENT+RW+USER. In the end, we just write first the
address of the first PDP entry to the PML4.

In the next step we will build four Page Directory entries in the Page
Directory Pointer table with the same PRESENT+RW+USE flags:

leal pgtable + 0x1000(%ebx), %edi
leal 0x1007 (%edi), ‘%eax
movl $4, Yhecx
1: movl Y%eax, 0x00(%edi)
addl $0x00001000, %eax
addl $8, Y%edi
decl hecx
jnz 1b

We put the base address of the page directory pointer which is 4096 or 0x1000
offset from the pgtable table in edi and the address of the first page directory
pointer entry in eax register. Put 4 in the ecx register, it will be a counter in
the following loop and write the address of the first page directory pointer table
entry to the edi register. After this edi will contain the address of the first
page directory pointer entry with flags 0x7. Next we just calculate the address
of following page directory pointer entries where each entry is 8 bytes, and write
their addresses to eax. The last step of building paging structure is the building
of the 2048 page table entries with 2-MByte pages:

leal pgtable + 0x2000(%ebx), %edi
movl $0x00000183, Yeax
movl $2048, %ecx
1: movl %eax, 0(%edi)
addl $0x00200000, %eax
addl $8, Yedi
decl Yhecx
jnz 1b

Here we do almost the same as in the previous example, all entries will be with
flags - $0x00000183 - PRESENT + WRITE + MBZ. In the end, we will have 2048
pages with 2-MByte page or:

>>> 2048 * 0x00200000
4294967296

4G page table. We just finished to build our early page table structure which
maps 4 gigabytes of memory and now we can put the address of the high-level
page table - PML4 - in cr3 control register:
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leal pgtable(%ebx), %eax
movl %heax, %hcr3

That’s all. All preparation are finished and now we can see transition to the
long mode.

Transition to the 64-bit mode

First of all we need to set the EFER.LME flag in the MSR to 0xC0000080:

movl $MSR_EFER, %ecx
rdmsr

btsl $_EFER_LME, jeax
WImsT

Here we put the MSR_EFER flag (which is defined in arch/x86/include/uapi/asm/msr-
index.h) in the ecx register and call rdmsr instruction which reads the MSR
register. After rdmsr executes, we will have the resulting data in edx:eax which
depends on the ecx value. We check the EFER_LME bit with the btsl instruction
and write data from eax to the MSR register with the wrmsr instruction.

In the next step, we push the address of the kernel segment code to the stack
(we defined it in the GDT) and put the address of the startup_64 routine in
eax.

pushl  $__KERNEL_CS
leal startup_64(%ebp), ‘eax

After this we push this address to the stack and enable paging by setting PG and
PE bits in the crO register:

pushl  Y%eax
movl  $(X86_CRO_PG | X86_CRO_PE), Y%eax
movl Y%eax, %hcrO

and execute:
lret
instruction.

Remember that we pushed the address of the startup_64 function to the stack
in the previous step, and after the 1ret instruction, the CPU extracts the address
of it and jumps there.

After all of these steps we're finally in 64-bit mode:

.code64
.org 0x200
ENTRY (startup_64)
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That’s all!

Conclusion

This is the end of the fourth part linux kernel booting process. If you have
questions or suggestions, ping me in twitter 0xAX, drop me email or just create
an issue.

In the next part, we will see kernel decompression and much more.

Please note that English is not my first language and I am really sorry
for any inconvenience. If you find any mistakes please send me PR
to linux-insides.

Links

o Protected mode

e Intel® 64 and TA-32 Architectures Software Developer’s Manual 3A
e GNU linker

e« SSE

o Paging

o Model specific register
o fill instruction

e Previous part

e Paging on osdev.org

o Paging Systems

o x86 Paging Tutorial

Kernel booting process. Part 5.

Kernel decompression

This is the fifth part of the Kernel booting process series. We saw transition
to the 64-bit mode in the previous part and we will continue from this point in this
part. We will see the last steps before we jump to the kernel code as preparation
for kernel decompression, relocation and directly kernel decompression. So...
let’s start to dive in the kernel code again.
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Preparation before kernel decompression

We stopped right before the jump on the 64-bit entry point - startup_64 which
is located in the arch/x86/boot/compressed/head_64.S source code file. We
already saw the jump to the startup_64 in the startup_32:

pushl  $__KERNEL_CS
leal startup_64(%ebp), %eax

pushl  %eax

lret
in the previous part. Since we loaded the new Global Descriptor Table and

there was CPU transition in other mode (64-bit mode in our case), we can see
the setup of the data segments:

.code64
.org 0x200

ENTRY (startup_64)
xorl Yeax, %heax
movl Y%eax, %ds
movl %eax, %hes
movl %eax, %ss
movl %eax, %fs
movl %eax, %gs

in the beginning of the startup_64. All segment registers besides cs register
now reseted as we joined into the long mode.

The next step is computation of difference between where the kernel was compiled
and where it was loaded:

#ifdef CONFIG_RELOCATABLE
leaq startup_32(%rip), %rbp

movl BP_kernel_alignment (%rsi), J%eax
decl fheax

addq %rax, %rbp

notq frax

andq frax, %rbp
cmpq  $LOAD_PHYSICAL_ADDR, %rbp
jge 1f
#endif
movq $LOAD_PHYSICAL_ADDR, %rbp
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movl BP_init_size(%rsi), %ebx
subl $_end, %ebx
addq %rbp, %rbx

The rbp contains the decompressed kernel start address and after this code
executes rbx register will contain address to relocate the kernel code for de-
compression. We already saw code like this in the startup_32 ( you can read
about it in the previous part - Calculate relocation address), but we need to do
this calculation again because the bootloader can use 64-bit boot protocol and
startup_32 just will not be executed in this case.

In the next step we can see setup of the stack pointer and resetting of the flags
register:

leaq boot_stack_end(%rbx), %rsp

pushq $0
popfq

As you can see above, the rbx register contains the start address of the kernel
decompressor code and we just put this address with boot_stack_end offset to
the rsp register which represents pointer to the top of the stack. After this step,
the stack will be correct. You can find definition of the boot_stack_end in the
end of arch/x86/boot/compressed/head 64.S assembly source code file:

.bss

.balign 4
boot_heap:

.fill BOOT_HEAP_SIZE, 1, O
boot_stack:

.fill BOOT_STACK_SIZE, 1, O
boot_stack_end:

It located in the end of the .bss section, right before the .pgtable. If you will
look into arch/x86/boot/compressed /vmlinux.lds.S linker script, you will find
Definition of the .bss and .pgtable there.

As we set the stack, now we can copy the compressed kernel to the address that
we got above, when we calculated the relocation address of the decompressed
kernel. Before details, let’s look at this assembly code:

pushqg  Yrsi
leaq (_bss-8) (Yrip), Y%rsi
leaq (_bss-8) (%rbx), %rdi

movq $_bss, Yrcx
shrq $3, Y%rcx
std

rep movsq

cld
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popq %hrsi

First of all we push rsi to the stack. We need preserve the value of rsi,
because this register now stores a pointer to the boot_params which is real mode
structure that contains booting related data (you must remember this structure,
we filled it in the start of kernel setup). In the end of this code we’ll restore the
pointer to the boot_params into rsi again.

The next two leaq instructions calculates effective addresses of the rip
and rbx with _bss - 8 offset and put it to the rsi and rdi. Why do we
calculate these addresses? Actually the compressed kernel image is located
between this copying code (from startup_32 to the current code) and the
decompression code. You can verify this by looking at the linker script -
arch/x86/boot/compressed /vmlinux.1ds.S:

. = 0;
.head.text : {
_head = . ;
HEAD_TEXT
_ehead = . ;
X
.rodata..compressed : {
*x(.rodata. .compressed)

}
.text @ {
_text = .; /* Text x/
*(.text)
*x(.text.*)
_etext = . ;
}

Note that .head.text section contains startup_32. You may remember it from
the previous part:

__HEAD
.code32
ENTRY (startup_32)

The .text section contains decompression code:

.text
relocated:

/e
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* Do the decompression, and jump to the new kernel..

*/

And .rodata..compressed contains the compressed kernel image. So rsi will
contain the absolute address of _bss - 8, and rdi will contain the relocation
relative address of _bss - 8. As we store these addresses in registers, we put
the address of _bss in the rcx register. As you can see in the vmlinux.1lds.S
linker script, it’s located at the end of all sections with the setup/kernel code.
Now we can start to copy data from rsi to rdi, 8 bytes at the time, with the
movsq instruction.

Note that there is an std instruction before data copying: it sets the DF flag,
which means that rsi and rdi will be decremented. In other words, we will copy
the bytes backwards. At the end, we clear the DF flag with the c1d instruction,
and restore boot_params structure to rsi.

Now we have the address of the .text section address after relocation, and we
can jump to it:
leaq relocated(%rbx), Yrax

jmp *%rax

Last preparation before kernel decompression

In the previous paragraph we saw that the .text section starts with the
relocated label. The first thing it does is clearing the bss section with:

xorl heax, heax

leaq _bss(Yrip), %rdi
leaq _ebss (%rip), Y%rcx
subq %rdi, hrex

shrq $3, Yrcx

rep stosq

We need to initialize the .bss section, because we’ll soon jump to C code. Here
we just clear eax, put the address of _bss in rdi and _ebss in rcx, and fill it
with zeros with the rep stosq instruction.

At the end, we can see the call to the extract_kernel function:

pushqg  Yrsi

movq frsi, Yrdi

leaq boot_heap(%rip), %rsi
leaq input_data(¥%rip), %rdx
movl $z_input_len, Yecx
movq %rbp, %r8

movq $z_output_len, %r9
call extract_kernel
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popq %hrsi

Again we set rdi to a pointer to the boot_params structure and preserve it on
the stack. In the same time we set rsi to point to the area which should be used
for kernel uncompression. The last step is preparation of the extract_kernel
parameters and call of this function which will uncompres the kernel. The
extract_kernel function is defined in the arch/x86/boot/compressed /misc.c
source code file and takes six arguments:

e rmode - pointer to the boot_ params structure which is filled by bootloader
or during early kernel initialization;

¢ heap - pointer to the boot_heap which represents start address of the early
boot heap;

e input_data - pointer to the start of the compressed kernel or in other
words pointer to the arch/x86/boot/compressed/vmlinux.bin.bz2;

e input_len - size of the compressed kernel;

e output - start address of the future decompressed kernel;

e output_len - size of decompressed kernel;

All arguments will be passed through the registers according to System V
Application Binary Interface. We’ve finished all preparation and can now look
at the kernel decompression.

Kernel decompression

As we saw in previous paragraph, the extract_kernel function is defined in
the arch/x86/boot/compressed/misc.c source code file and takes six arguments.
This function starts with the video/console initialization that we already saw
in the previous parts. We need to do this again because we don’t know if we
started in real mode or a bootloader was used, or whether the bootloader used
the 32 or 64-bit boot protocol.

After the first initialization steps, we store pointers to the start of the free
memory and to the end of it:

free_mem_ptr = heap;
free_mem_end_ptr = heap + BOOT_HEAP_SIZE;

where the heap is the second parameter of the extract_kernel function which
we got in the arch/x86/boot/compressed/head_ 64.S:

leaq boot_heap(Yrip), %rsi
As you saw above, the boot_heap is defined as:

boot_heap:
.fill BOOT_HEAP_SIZE, 1, O

where the BOOT_HEAP_SIZE is macro which expands to 0x10000 (0x400000 in a
case of bzip2 kernel) and represents the size of the heap.
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After heap pointers initialization, the next step is the call of the
choose_random_location function from arch/x86/boot/compressed/kaslr.c
source code file. As we can guess from the function name, it chooses the memory
location where the kernel image will be decompressed. It may look weird that
we need to find or even choose location where to decompress the compressed
kernel image, but the Linux kernel supports kKASLR which allows decompression
of the kernel into a random address, for security reasons.

We will not consider randomization of the Linux kernel load address in this part,
but will do it in the next part.

Now let’s back to misc.c. After getting the address for the kernel image, there
need to be some checks to be sure that the retrieved random address is correctly
aligned and address is not wrong:

if ((unsigned long)output & (MIN_KERNEL_ALIGN - 1))

error("Destination physical address inappropriately aligned");

if (virt_addr & (MIN_KERNEL_ALIGN - 1))
error("Destination virtual address inappropriately aligned");

if (heap > Ox3fffffffffffUL)
error("Destination address too large");

if (virt_addr + max(output_len, kernel_total_size) > KERNEL_IMAGE_SIZE)
error("Destination virtual address is beyond the kernel mapping area');

if ((unsigned long)output !'= LOAD_PHYSICAL_ADDR)
error("Destination address does not match LOAD_PHYSICAL_ADDR");

if (virt_addr != LOAD_PHYSICAL_ADDR)
error("Destination virtual address changed when not relocatable");
After all these checks we will see the familiar message:
Decompressing Linux...
and call the __decompress function:
__decompress (input_data, input_len, NULL, NULL, output, output_len, NULL, error);

which will decompress the kernel. The implementation of the __decompress
function depends on what decompression algorithm was chosen during kernel
compilation:

#ifdef CONFIG_KERNEL_GZIP
#include "../../../../lib/decompress_inflate.c"
#endif

#ifdef CONFIG_KERNEL_BZIP2

61


https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/compressed/kaslr.c#L425
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/boot/compressed/misc.c#L404

#include "../../../../lib/decompress_bunzip2.c"

#endif

#ifdef CONFIG_KERNEL_LZMA

#include "../../../../lib/decompress_unlzma.c"

#endif
#ifdef CONFIG_KERNEL_XZ
#include "

#endif

#ifdef CONFIG_KERNEL_LZO

../../../../1ib/decompress_unxz.c"

#include "../../../../1lib/decompress_unlzo.c"

#endif

#ifdef CONFIG_KERNEL_LZ4

#include "../../../../1lib/decompress_unlz4.c"

#endif

After kernel is decompressed, the last two functions are parse_elf and
handle_relocations. The main point of these functions is to move the
uncompressed kernel image to the correct memory place. The fact is that the
decompression will decompress in-place, and we still need to move kernel to the
correct address. As we already know, the kernel image is an ELF executable, so
the main goal of the parse_elf function is to move loadable segments to the
correct address. We can see loadable segments in the output of the readelf

program:

readelf -1 vmlinux

Elf file type is EXEC (Executable file)

Entry point 0x1000000

There are 5 program headers, starting at offset 64

Program Headers:

Type Offset
FileSiz
LOAD 0x0000000000200000
0x0000000000893000
LOAD 0x0000000000a93000
0x000000000016d000
LOAD 0x0000000000c00000
0x00000000000152d8
LOAD 0x0000000000¢16000
0x0000000000138000

The goal of the parse_elf function is to
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VirtAddr PhysAddr

MemSiz Flags Align
Oxff££££££81000000 0x0000000001000000
0x0000000000893000 R E 200000
Oxfff£f£££81893000 0x0000000001893000

0x0000000000164000 RW 200000
0x0000000000000000 0x0000000001200000
0x00000000000152d8 RW 200000

Oxfffffff£81a16000 0x0000000001a16000
0x000000000029b000 RWE 200000

load these segments to the output
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address we got from the choose_random_location function. This function
starts with checking the ELF signature:

E1f64_Ehdr ehdr;
E1f64_Phdr *phdrs, *phdr;

memcpy (&ehdr, output, sizeof (ehdr));

if (ehdr.e_ident[EI_MAGO] != ELFMAGO ||
ehdr.e_ident[EI_MAG1] != ELFMAG1 ||
ehdr.e_ident [EI_MAG2] !'= ELFMAG2 ||
ehdr.e_ident [EI_MAG3] != ELFMAG3) {
error("Kernel is not a valid ELF file");
return;

}

and if it’s not valid, it prints an error message and halts. If we got a valid ELF
file, we go through all program headers from the given ELF file and copy all
loadable segments with correct address to the output buffer:

for (i = 0; i < ehdr.e_phnum; i++) {
phdr = &phdrs[i];

switch (phdr->p_type) {
case PT_LOAD:
#ifdef CONFIG_RELOCATABLE
dest = output;
dest += (phdr->p_paddr - LOAD_PHYSICAL_ADDR);

#else
dest = (void *) (phdr->p_paddr);
#endif
memmove (dest, output + phdr->p_offset, phdr->p_filesz);
break;
default:
break;
}
}
That’s all.

From this moment, all loadable segments are in the correct place.

The next step after the parse_elf function is the call of the handle_relocations
function. Implementation of this function depends on the CONFIG_X86_NEED_RELOCS
kernel configuration option and if it is enabled, this function adjusts addresses
in the kernel image, and is called only if the CONFIG_RANDOMIZE_BASE configu-
ration option was enabled during kernel configuration. Implementation of the
handle_relocations function is easy enough. This function subtracts value of
the LOAD_PHYSICAL_ADDR from the value of the base load address of the kernel

63


https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

and thus we obtain the difference between where the kernel was linked to load
and where it was actually loaded. After this we can perform kernel relocation as
we know actual address where the kernel was loaded, its address where it was
linked to run and relocation table which is in the end of the kernel image.

After the kernel is relocated, we return back from the extract_kernel to
arch/x86 /boot/compressed /head__64.S.

The address of the kernel will be in the rax register and we jump to it:
jmp *Jrax

That’s all. Now we are in the kernel!

Conclusion

This is the end of the fifth part about linux kernel booting process. We will not
see posts about kernel booting anymore (maybe updates to this and previous
posts), but there will be many posts about other kernel internals.

Next chapter will describe more advanced details about linux kernel booting
process, like a load address randomization and etc.

If you have any questions or suggestions write me a comment or ping me in
twitter.

Please note that English is not my first language, And I am really
sorry for any inconvenience. If you find any mistakes please send me
PR to linux-insides.

Links

e address space layout randomization
e initrd

¢ long mode

e bzip2

e RdRand instruction

e Time Stamp Counter

e Programmable Interval Timers

e Previous part
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Kernel booting process. Part 6.

Introduction

This is the sixth part of the Kernel booting process series. In the previous
part we have seen the end of the kernel boot process. But we have skipped some
important advanced parts.

As you may remember the entry point of the Linux kernel is the
start_kernel function from the main.c source code file started to ex-
ecute at LOAD_PHYSICAL_ADDR address. This address depends on the
CONFIG_PHYSICAL_START kernel configuration option which is 0x1000000 by
default:

config PHYSICAL_START
hex "Physical address where the kernel is loaded" if (EXPERT || CRASH_DUMP)
default "0x1000000"
---help---
This gives the physical address where the kernel is loaded.

This value may be changed during kernel configuration, but also load address can
be selected as a random value. For this purpose the CONFIG_RANDOMIZE_BASE
kernel configuration option should be enabled during kernel configuration.

In this case a physical address at which Linux kernel image will be decompressed
and loaded will be randomized. This part considers the case when this option is
enabled and load address of the kernel image will be randomized for security
reasons.

Initialization of page tables

Before the kernel decompressor will start to find random memory range where
the kernel will be decompressed and loaded, the identity mapped page tables
should be initialized. If a bootloader used 16-bit or 32-bit boot protocol, we
already have page tables. But in any case, we may need new pages by demand
if the kernel decompressor selects memory range outside of them. That’s why
we need to build new identity mapped page tables.

Yes, building of identity mapped page tables is the one of the first step during
randomization of load address. But before we will consider it, let’s try to
remember where did we come from to this point.

In the previous part, we saw transition to long mode and jump to the kernel
decompressor entry point - extract_kernel function. The randomization stuff
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starts here from the call of the:

void choose_random_location(unsigned long input,
unsigned long input_size,
unsigned long *output,
unsigned long output_size,
unsigned long *virt_addr)

{3
function. As you may see, this function takes following five parameters:

e input;

e input_size;
e output;

e output_isze;
e virt_addr.

Let’s try to understand what these parameters are. The first input pa-
rameter came from parameters of the extract_kernel function from the
arch/x86 /boot /compressed /misc.c source code file:

asmlinkage __visible void *extract_kernel(void *rmode, memptr heap,
unsigned char *input_data,
unsigned long input_len,
unsigned char *output,
unsigned long output_len)

choose_random_location((unsigned long)input_data, input_len,
(unsigned long *)&output,
max (output_len, kernel_total_size),
&virt_addr);

}
This parameter is passed from assembler code:
leaq input_data(%rip), %rdx

from the arch/x86/boot/compressed/head_64.S. The input_data is generated
by the little mkpiggy program. If you have compiled linux kernel source code
under your hands, you may find the generated file by this program which should
be placed in the 1inux/arch/x86/boot/compressed/piggy.S. In my case this
file looks:

.section ".rodata..compressed","a",@progbits
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.globl z_input_len

z_input_len = 6988196

.globl z_output_len

z_output_len = 29207032

.globl input_data, input_data_end

input_data:

.incbin "arch/x86/boot/compressed/vmlinux.bin.gz"
input_data_end:

As you may see it contains four global symbols. The first two z_input_len and
z_output_len which are sizes of compressed and uncompressed vmlinux.bin.gz.
The third is our input_data and as you may see it points to linux kernel image in
raw binary format (all debugging symbols, comments and relocation information
are stripped). And the last input_data_end points to the end of the compressed
linux image.

So, our first parameter of the choose_random_location function is the pointer
to the compressed kernel image that is embedded into the piggy.o object file.

The second parameter of the choose_random_location function is the
z_input_len that we have seen just now.

The third and fourth parameters of the choose_random_location function are
address where to place decompressed kernel image and the length of decompressed
kernel image respectively. The address where to put decompressed kernel came
from arch/x86/boot/compressed/head_ 64.S and it is address of the startup_32
aligned to 2 megabytes boundary. The size of the decompressed kernel came
from the same piggy.S and it is z_output_len.

The last parameter of the choose_random_location function is the virtual
address of the kernel load address. As we may see, by default it coincides with
the default physical load address:

unsigned long virt_addr = LOAD_PHYSICAL_ADDR;
which depends on kernel configuration:

#define LOAD_PHYSICAL_ADDR ((CONFIG_PHYSICAL_START \
+ (CONFIG_PHYSICAL ALIGN - 1)) \
& ~(CONFIG_PHYSICAL_ALIGN - 1))

Now, as we considered parameters of the choose_random_location function,
let’s look at implementation of it. This function starts from the checking of
nokaslr option in the kernel command line:

if (cmdline_find_option_bool("nokaslr")) {
warn("KASLR disabled: 'mokaslr' on cmdline.");
return;
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and if the options was given we exit from the choose_random_location function
ad kernel load address will not be randomized. Related command line options
can be found in the kernel documentation:

kaslr/nokaslr [X86]

Enable/disable kernel and module base offset ASLR
(Address Space Layout Randomization) if built into
the kernel. When CONFIG_HIBERNATION is selected,
kASLR is disabled by default. When kASLR is enabled,
hibernation will be disabled.

Let’s assume that we didn’t pass nokaslr to the kernel command line and the
CONFIG_RANDOMIZE_BASE kernel configuration option is enabled.

The next step is the call of the:
initialize_identity_maps();

function which is defined in the arch/x86/boot/compressed /pagetable.c source
code file. This function starts from initialization of mapping_info an instance
of the x86_mapping_info structure:

mapping_info.alloc_pgt_page = alloc_pgt_page;
mapping_info.context = &pgt_data;

mapping_info.page_flag = __PAGE_KERNEL_LARGE_EXEC | sev_me_mask;
mapping_info.kernpg_flag = _KERNPG_TABLE | sev_me_mask;

The x86_mapping_info structure is defined in the arch/x86/include/asm/init.h
header file and looks:

struct x86_mapping_info {
void *(*alloc_pgt_page) (void *);
void *context;
unsigned long page_flag;
unsigned long offset;
bool direct_gbpages;
unsigned long kernpg_flag;

I

This structure provides information about memory mappings. As you may
remember from the previous part, we already setup’ed initial page tables from
0 up to 4G. For now we may need to access memory above 4G to load kernel
at random position. So, the initialize_identity_maps function executes
initialization of a memory region for a possible needed new page table. First of
all let’s try to look at the definition of the x86_mapping_info structure.

The alloc_pgt_page is a callback function that will be called to allocate space
for a page table entry. The context field is an instance of the alloc_pgt_data
structure in our case which will be used to track allocated page tables. The
page_flag and kernpg_flag fields are page flags. The first represents flags for
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PMD or PUD entries. The second kernpg_flag field represents flags for kernel
pages which can be overridden later. The direct_gbpages field represents
support for huge pages and the last offset field represents offset between kernel
virtual addresses and physical addresses up to PMD level.

The alloc_pgt_page callback just validates that there is space for a new page,
allocates new page:

entry = pages—->pgt_buf + pages->pgt_buf_offset;
pages—->pgt_buf_offset += PAGE_SIZE;

in the buffer from the:

struct alloc_pgt_data {
unsigned char *pgt_buf;
unsigned long pgt_buf_size;
unsigned long pgt_buf_offset;

};

structure and returns address of a new page. The last goal of the
initialize_identity_maps function is to initialize pgdt_buf_size
and pgt_buf_offset. As we are only in initialization phase, the

initialze_identity_maps function sets pgt_buf_offset to zero:
pgt_data.pgt_buf_offset = 0;

and the pgt_data.pgt_buf_size will be set to 77824 or 69632 depends on
which boot protocol will be used by bootloader (64-bit or 32-bit). The same is
for pgt_data.pgt_buf. If a bootloader loaded the kernel at startup_32, the
pgdt_data.pgdt_buf will point to the end of the page table which already was
initialzed in the arch/x86/boot/compressed/head 64.S:

pgt_data.pgt_buf = _pgtable + BOOT_INIT_PGT_SIZE;

where _pgtable points to the beginning of this page table _pgtable. In other
way, if a bootloader have used 64-bit boot protocol and loaded the kernel at
startup_64, early page tables should be built by bootloader itself and _pgtable
will be just overwrote:

pgt_data.pgt_buf = _pgtable

As the buffer for new page tables is initialized, we may return back to the
choose_random_location function.

Avoid reserved memory ranges
After the stuff related to identity page tables is initilized, we may start to choose

random location where to put decompressed kernel image. But as you may guess,
we can’t choose any address. There are some reseved addresses in memory ranges.
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Such addresses occupied by important things, like initrd, kernel command line
and etc. The

mem_avoid_init(input, input_size, *output);

function will help us to do this. All non-safe memory regions will be collected in
the:

struct mem_vector {
unsigned long long start;
unsigned long long size;

};

static struct mem_vector mem_avoid [MEM_AVOID_MAX];

array. Where MEM_AVOID_MAX is from mem_avoid_index enum which represents
different types of reserved memory regions:

enum mem_avoid_index {
MEM_AVOID_Z0 RANGE = 0,
MEM_AVOID_INITRD,
MEM_AVOID_CMDLINE,
MEM_AVOID_BOOTPARAMS,
MEM_AVOID_MEMMAP_BEGIN,
MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1,
MEM_AVOID_MAX,
};

Both are defined in the arch/x86/boot/compressed/kaslr.c source code file.

Let’s look at the implementation of the mem_avoid_init function. The main
goal of this function is to store information about reseved memory regions
described by the mem_avoid_index enum in the mem_avoid array and create
new pages for such regions in our new identity mapped buffer. Numerous parts
fo the mem_avoid_index function are similar, but let’s take a look at the one of
them:

mem_avoid [MEM_AVOID_ZO_RANGE] .start = input;
mem_avoid [MEM_AVOID_ZO_RANGE] .size = (output + init_size) - input;
add_identity_map(mem_avoid [MEM_AVOID_ZO_RANGE] .start,

mem_avoid [MEM_AVOID_ZO_RANGE] .size);

At the beginning of the mem_avoid_init function tries to avoid memory
region that is used for current kernel decompression. We fill an entry
from the mem_avoid array with the start and size of such region and
call the add_identity_map function which should build identity mapped
pages for this region. The add_identity_map function is defined in the
arch/x86/boot/compressed/kaslr.c source code file and looks:

void add_identity_map(unsigned long start, unsigned long size)

{
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unsigned long end = start + size;

start = round_down(start, PMD_SIZE);
end = round_up(end, PMD_SIZE);
if (start >= end)

return;

kernel_ident_mapping_init (&mapping_info, (pgd_t *)top_level_pgt,
start, end);

}

As you may see it aligns memory region to 2 megabytes boundary and checks
given start and end addresses.

In the end it just calls the kernel_ident_mapping_init function from the
arch/x86/mm/ident__map.c source code file and pass mapping_info instance
that was initilized above, address of the top level page table and addresses of
memory region for which new identity mapping should be built.

The kernel_ident_mapping_init function sets default flags for new pages if
they were not given:

if ('info->kernpg_flag)
info->kernpg_flag = _KERNPG_TABLE;

and starts to build new 2-megabytes (because of PSE bit in the mapping_info.page_flag)
page entries (PGD -> P4D -> PUD -> PMD in a case of five-level page tables or

PGD -> PUD -> PMD in a case of four-level page tables) related to the given
addresses.

for (; addr < end; addr = next) {
p4d_t *p4d;

next = (addr & PGDIR_MASK) + PGDIR_SIZE;
if (next > end)
next = end;

p4d = (p4d_t *)info->alloc_pgt_page(info->context) ;
result = ident_p4d_init(info, p4d, addr, next);

return result;

}

First of all here we find next entry of the Page Global Directory for the given
address and if it is greater than end of the given memory region, we set it to
end. After this we allocater a new page with our x86_mapping_info callback
that we already considered above and call the ident_p4d_init function. The
ident_p4d_init function will do the same, but for low-level page directories
(p4d -> pud -> pmd).
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That’s all.

New page entries related to reserved addresses are in our page tables. This is
not the end of the mem_avoid_init function, but other parts are similar. It just
build pages for initrd, kernel command line and etc.

Now we may return back to choose_random_location function.

Physical address randomization

After the reserved memory regions were stored in the mem_avoid array and
identity mapping pages were built for them, we select minimal available address
to choose random memory region to decompress the kernel:

min_addr = min(*output, 512UL << 20);

As you may see it should be smaller than 512 megabytes. This 512 megabytes
value was selected just to avoid unknown things in lower memory.

The next step is to select random physical and virtual addresses to load kernel.
The first is physical addresses:

random_addr = find_random_phys_addr(min_addr, output_size);
The find_random_phys_addr function is defined in the same source code file:

static unsigned long find_random_phys_addr (unsigned long minimum,
unsigned long image_size)

{
minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
if (process_efi_entries(minimum, image_size))
return slots_fetch_random();
process_e820_entries(minimum, image_size);
return slots_fetch_random();
}

The main goal of process_efi_entries function is to find all suitable memory
ranges in full accessible memory to load kernel. If the kernel compiled and
runned on the system without EFI support, we continue to search such memory
regions in the €820 regions. All founded memory regions will be stored in the

struct slot_area {
unsigned long addr;
int num;

};

#define MAX_SLOT_AREA 100
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static struct slot_area slot_areas[MAX_SLOT_AREA];

array. The kernel decompressor should select random index of this array and
it will be random place where kernel will be decompressed. This selection
will be executed by the slots_fetch_random function. The main goal of the
slots_fetch_random function is to select random memory range from the
slot_areas array via kaslr_get_random_long function:

slot = kaslr_get_random_long("Physical") % slot_max;

The kaslr_get_random_long function is defined in the arch/x86/lib/kaslr.c
source code file and it just returns random number. Note that the random
number will be get via different ways depends on kernel configuration and system
opportunities (select random number base on time stamp counter, rdrand and
SO on).

That’s all from this point random memory range will be selected.

Virtual address randomization

After random memory region was selected by the kernel decompressor, new
identity mapped pages will be built for this region by demand:

random_addr = find_random_phys_addr(min_addr, output_size);

if (*output != random_addr) {
add_identity_map(random_addr, output_size);
xoutput = random_addr;

}

From this time output will store the base address of a memory region where
kernel will be decompressed. But for this moment, as you may remember we
randomized only physical address. Virtual address should be randomized too in
a case of x86_ 64 architecture:

if (IS_ENABLED(CONFIG_X86_64))
random_addr = find_random_virt_addr (LOAD_PHYSICAL_ADDR, output_size);

*virt_addr = random_addr;

As you may see in a case of non x86_64 architecture, randomzed virtual address
will coincide with randomized physical address. The find_random_virt_addr
function calculates amount of virtual memory ranges that may hold kernel image
and calls the kaslr_get_random_long that we already saw in a previous case
when we tried to find random physical address.

From this moment we have both randomized base physical (*output) and virtual
(*virt_addr) addresses for decompressed kernel.
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That’s all.

Conclusion

This is the end of the sixth and the last part about linux kernel booting process.
We will not see posts about kernel booting anymore (maybe updates to this and
previous posts), but there will be many posts about other kernel internals.

Next chapter will be about kernel initialization and we will see the first steps in
the Linux kernel initialization code.

If you have any questions or suggestions write me a comment or ping me in
twitter.

Please note that English is not my first language, And I am really
sorry for any inconvenience. If you find any mistakes please send me
PR to linux-insides.

Links

e Address space layout randomization
¢ Linux kernel boot protocol
o long mode

e initrd

o Enumerated type

o four-level page tables

o five-level page tables

o« EFI

e ¢820

e time stamp counter

e rdrand

o x86_64

e Previous part
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Cgroups

This chapter describes control groups mechanism in the Linux kernel.

¢ Introduction

Control Groups

Introduction

This is the first part of the new chapter of the linux insides book and as you may
guess by part’s name - this part will cover control groups or cgroups mechanism
in the Linux kernel.

Cgroups are special mechanism provided by the Linux kernel which allows us to
allocate kind of resources like processor time, number of processes per group,
amount of memory per control group or combination of such resources for a
process or set of processes. Cgroups are organized hierarchically and here this
mechanism is similar to usual processes as they are hierarchical too and child
cgroups inherit set of certain parameters from their parents. But actually they
are not the same. The main differences between cgroups and normal processes
that many different hierarchies of control groups may exist simultaneously in
one time while normal process tree is always single. This was not a casual
step because each control group hierarchy is attached to set of control group
subsystems.

One control group subsystem represents one kind of resources like a processor
time or number of pids or in other words number of processes for a control
group. Linux kernel provides support for following twelve control group
subsystems:

o cpuset - assigns individual processor(s) and memory nodes to task(s) in a
group;

e cpu - uses the scheduler to provide cgroup tasks access to the processor
resources;

e cpuacct - generates reports about processor usage by a group;

o io - sets limit to read/write from/to block devices;

e memory - sets limit on memory usage by a task(s) from a group;

e devices - allows access to devices by a task(s) from a group;

e freezer - allows to suspend/resume for a task(s) from a group;

e net_cls - allows to mark network packets from task(s) from a group;

e net_prio - provides a way to dynamically set the priority of network traffic
per network interface for a group;

e perf_event - provides access to perf events to a group;

e hugetlb - activates support for huge pages for a group;
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e pid - sets limit to number of processes in a group.

Each of these control group subsystems depends on related configuration option.
For example the cpuset subsystem should be enabled via CONFIG_CPUSETS
kernel configuration option, the io subsystem via CONFIG_BLK_CGROUP kernel
configuration option and etc. All of these kernel configuration options may be
found in the General setup - Control Group support menu:

http://0i66.tinypic.com/2rc2a9e. jpg

Figure 1: menuconfig

You may see enabled control groups on your computer via proc filesystem:

$ cat /proc/cgroups
#subsys_name

cpuset 8
cpu 7 66
cpuacct 7
blkio 11

memory 9
devices 6
freezer 2
net_cls 4
perf_event
net_prio

hugetlb 10
pids 5

or via sysfs:
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dr-xr-xr-x root root O Dec
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22:
22:37 net_prio -> net_cls,net_prio
22:37 perf_event

22:37 pids

22:37 systemd

dr-xr-xr-x root root O Dec
dr-xr-xr-x 5 root root O Dec

As you already may guess that control groups mechanism is not such mech-
anism which was invented only directly to the needs of the Linux kernel, but
mostly for userspace needs. To use a control group, we should create it at
first. We may create a cgroup via two ways.

The first way is to create subdirectory in any subsystem from /sys/fs/cgroup
and add a pid of a task to a tasks file which will be created automatically right
after we will create the subdirectory.

The second way is to create/destroy/manage cgroups with utils from libcgroup
library (libcgroup-tools in Fedora).

Let’s consider simple example. Following bash script will print a line to /dev/tty
device which represents control terminal for the current process:

#!/bin/bash

while :

do
echo "print line" > /dev/tty
sleep 5

done

So, if we will run this script we will see following result:

$ sudo chmod +x cgroup_test_script.sh
~$ ./cgroup_test_script.sh

print line

print line

print line

Now let’s go to the place where cgroupfs is mounted on our computer. As we
just saw, this is /sys/fs/cgroup directory, but you may mount it everywhere
you want.

$ cd /sys/fs/cgroup

And now let’s go to the devices subdirectory which represents kind of resources
that allows or denies access to devices by tasks in a cgroup:

# cd devices

and create cgroup_test_group directory there:
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# mkdir cgroup_test_group

After creation of the cgroup_test_group directory, following files will be gener-
ated there:

/sys/fs/cgroup/devices/cgroup_test_group$ 1ls -1
total O

-rw-r——r—— 1 root root 0 Dec 3 22:55 cgroup.clone_children
-rw-r—-r—— 1 root root O Dec 3 22:55 cgroup.procs
——Wo—————- 1 root root O Dec 3 22:55 devices.allow
——W-—————- 1 root root 0 Dec 3 22:55 devices.deny
-r—-r--r-- 1 root root 0 Dec 3 22:55 devices.list
-rw-r—-r—— 1 root root O Dec 3 22:55 notify_on_release
-rw-r—-r—-— 1 root root 0 Dec 3 22:55 tasks

For this moment we are interested in tasks and devices.deny files. The
first tasks files should contain pid(s) of processes which will be attached to
the cgroup_test_group. The second devices.deny file contain list of denied
devices. By default a newly created group has no any limits for devices access. To
forbid a device (in our case it is /dev/tty) we should write to the devices.deny
following line:

# echo "c 5:0 w" > devices.deny

Let’s go step by step through this line. The first c letter represents type of
a device. In our case the /dev/tty is char device. We can verify this from
output of 1s command:

~$ 1s -1 /dev/tty
cru-rw-rw—- 1 root tty 5, O Dec 3 22:48 /dev/tty

see the first c letter in a permissions list. The second part is 5:0 is minor and
major numbers of the device. You can see these numbers in the output of 1s
too. And the last w letter forbids tasks to write to the specified device. So let’s
start the cgroup_test_script.sh script:

~$ ./cgroup_test_script.sh
print line
print line
print line

and add pid of this process to the devices/tasks file of our group:
# echo $(pidof -x cgroup_test_script.sh) > /sys/fs/cgroup/devices/cgroup_test_group/tasks
The result of this action will be as expected:

~$ ./cgroup_test_script.sh
print line
print line



print line
print line
print line
print line
./cgroup_test_script.sh: line 5: /dev/tty: Operation not permitted

Similar situation will be when you will run you docker containers for example:

~$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
fa2d2085cdlc mariadb:10 "docker-entrypoint..." 12 days ago Up 4 m:

~$ cat /sys/fs/cgroup/devices/docker/fa2d2085cd1c8d797002c77387d2061£56fefb470892f140d0dc51:
5501
5584
5585

So, during startup of a docker container, docker will create a cgroup for
processes in this container:

$ docker exec -it mysql-work /bin/bash
$ top
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

And we may see this cgroup on host machine:

$ systemd-cgls

Control group /:
—-.slice
docker
£a2d2085¢cd1¢c8d797002c77387d2061£56fefb470892f140d0dc511bd4d9bb61
5501 mysqld
6404 /bin/bash

Now we know a little about control groups mechanism, how to use it manually
and what’s purpose of this mechanism. Time to look inside of the Linux kernel
source code and start to dive into implementation of this mechanism.

Early initialization of control groups

Now after we just saw little theory about control groups Linux kernel mecha-
nism, we may start to dive into the source code of Linux kernel to acquainted
with this mechanism closer. As always we will start from the initialization of
control groups. Initialization of cgroups divided into two parts in the Linux
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kernel: early and late. In this part we will consider only early part and late
part will be considered in next parts.

Early initialization of cgroups starts from the call of the:
cgroup_init_early();

function in the init/main.c during early initialization of the Linux kernel. This
function is defined in the kernel/cgroup.c source code file and starts from the
definition of two following local variables:

int __init cgroup_init_early(void)

{
static struct cgroup_sb_opts __initdata opts;
struct cgroup_subsys *ss;

}
The cgroup_sb_opts structure defined in the same source code file and looks:

struct cgroup_sb_opts {
ul6é subsys_mask;
unsigned int flags;
char *release_agent;
bool cpuset_clone_children;
char *name;
bool none;

};

which represents mount options of cgroupfs. For example we may create named
cgroup hierarchy (with name my_cgrp) with the name= option and without any
subsystems:

$ mount -t cgroup -oname=my_cgrp,none /mnt/cgroups

The second variable - ss has type - cgroup_subsys structure which is defined
in the include/linux/cgroup-defs.h header file and as you may guess from the
name of the type, it represents a cgroup subsystem. This structure contains
various fields and callback functions like:

struct cgroup_subsys {
int (*css_online) (struct cgroup_subsys_state *css);
void (*css_offline) (struct cgroup_subsys_state *css);

bool early_init:1;
int id;
const char *name;
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struct cgroup_root *root;

}

Where for example css_online and css_offline callbacks are called after a
cgroup successfully will complete all allocations and a cgroup will be before re-
leasing respectively. The early_init flags marks subsystems which may /should
be initialized early. The id and name fields represents unique identifier in the
array of registered subsystems for a cgroup and name of a subsystem respectively.
The last - root fields represents pointer to the root of of a cgroup hierarchy.

Of course the cgroup_subsys structure is bigger and has other fields, but it is
enough for now. Now as we got to know important structures related to cgroups
mechanism, let’s return to the cgroup_init_early function. Main purpose of
this function is to do early initialization of some subsystems. As you already
may guess, these early subsystems should have cgroup_subsys->early_init
= 1. Let’s look what subsystems may be initialized early.

After the definition of the two local variables we may see following lines of code:

init_cgroup_root (&cgrp_dfl_root, &opts);
cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;

Here we may see call of the init_cgroup_root function which will execute
initialization of the default unified hierarchy and after this we set CSS_NO_REF
flag in state of this default cgroup to disable reference counting for this css. The
cgrp_dfl_root is defined in the same source code file:

struct cgroup_root cgrp_dfl_root;

Its cgrp field represented by the cgroup structure which represents a cgroup as
you already may guess and defined in the include/linux/cgroup-defs.h header
file. We already know that a process which is represented by the task_struct
in the Linux kernel. The task_struct does not contain direct link to a cgroup
where this task is attached. But it may be reached via css_set field of the
task_struct. This css_set structure holds pointer to the array of subsystem
states:

struct css_set {

struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT] ;
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And via the cgroup_subsys_state, a process may get a cgroup that this process
is attached to:

struct cgroup_subsys_state {

struct cgroup *cgroup;

}

So, the overall picture of cgroups related data structure is following:

| | |
tomm + | | | o
| | | | | |
| | | o o
| | | | | | cgroup
| | | | | ittt
|- + |- o=t
| cgroups | —————- > | cgroup_subsys_state | array of cgroup_subsys_state
| -———————— + B L e St
| | | | | cgroup_subsys_state
Fommm + o + o

o
| cgroup
o
| cgroup_subsys
o
|
|
+
o
| cgroup_subsys
o
| id
| name
| css_online
| css_ofline
I attach
|
o

So, the init_cgroup_root fills the cgrp_dfl_root with the default values. The



next thing is assigning initial css_set to the init_task which represents first
process in the system:

RCU_INIT_POINTER(init_task.cgroups, &init_css_set);

And the last big thing in the cgroup_init_early function is initialization of
early cgroups. Here we go over all registered subsystems and assign unique
identity number, name of a subsystem and call the cgroup_init_subsys function
for subsystems which are marked as early:

for_each_subsys(ss, i) {
ss—>id = i;
ss->name = cgroup_subsys_name[i];

if (ss—->early_init)
cgroup_init_subsys(ss, true);

}

The for_each_subsys here is a macro which is defined in the kernel/cgroup.c
source code file and just expands to the for loop over cgroup_subsys array.
Definition of this array may be found in the same source code file and it looks in
a little unusual way:

#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
static struct cgroup_subsys *cgroup_subsys[] = {
#include <linux/cgroup_subsys.h>
I
#undef SUBSYS

It is defined as SUBSYS macro which takes one argument (name of a subsystem)
and defines cgroup_subsys array of cgroup subsystems. Additionally we may
see that the array is initialized with content of the linux/cgroup_subsys.h header
file. If we will look inside of this header file we will see again set of the SUBSYS
macros with the given subsystems names:

#if IS_ENABLED(CONFIG_CPUSETS)
SUBSYS(cpuset)
#endif

#if IS_ENABLED(CONFIG_CGROUP_SCHED)
SUBSYS (cpu)
#endif

This works because of #undef statement after first definition of the SUBSYS macro.
Look at the &_x ## _cgrp_subsys expression. The ## operator concatenates
right and left expression in a C macro. So as we passed cpuset, cpu and etc., to
the SUBSYS macro, somewhere cpuset_cgrp_subsys, cp_cgrp_subsys should
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be defined. And that’s true. If you will look in the kernel/cpuset.c source code
file, you will see this definition:

struct cgroup_subsys cpuset_cgrp_subsys = {

.early_init = true,

};

So the last step in the cgroup_init_early function is initialization of early
subsystems with the call of the cgroup_init_subsys function. Following early
subsystems will be initialized:

e cpuset;
e Cpu;
e cpuacct.

The cgroup_init_subsys function does initialization of the given subsystem
with the default values. For example sets root of hierarchy, allocates space
for the given subsystem with the call of the css_alloc callback function, link
a subsystem with a parent if it exists, add allocated subsystem to the initial
process and etc.

That’s all. From this moment early subsystems are initialized.

Conclusion

It is the end of the first part which describes introduction into Control groups
mechanism in the Linux kernel. We covered some theory and the first steps of
initialization of stuffs related to control groups mechanism. In the next part
we will continue to dive into the more practical aspects of control groups.

If you have any questions or suggestions write me a comment or ping me at
twitter.

Please note that English is not my first language, And I am really
sorry for any inconvenience. If you find any mistakes please send me
a PR to linux-insides.

Links

e control groups
« PID
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o block devices
e huge pages
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Linux kernel concepts

This chapter describes various concepts which are used in the Linux kernel.

e Per-CPU variables

e CPU masks

e The initcall mechanism

¢ Notification Chains Per-CPU variables ===========—==—=———=—=———————————————————

Per-CPU variables are one of the kernel features. You can understand the
meaning of this feature by reading its name. We can create a variable and each
processor core will have its own copy of this variable. In this part, we take a
closer look at this feature and try to understand how it is implemented and how
it works.

The kernel provides an API for creating per-cpu variables - the DEFINE_PER_CPU
mnacro:

#define DEFINE_PER_CPU(type, name) \
DEFINE_PER_CPU_SECTION(type, name, "")

This macro defined in the include/linux/percpu-defs.h as many other macros for
work with per-cpu variables. Now we will see how this feature is implemented.

Take a look at the DEFINE_PER_CPU definition. We see that it takes 2 parameters:
type and name, so we can use it to create per-cpu variables, for example like
this:

DEFINE_PER_CPU(int, per_cpu_n)

We pass the type and the name of our variable. DEFINE_PER_CPU calls the
DEFINE_PER_CPU_SECTION macro and passes the same two parameters and empty
string to it. Let’s look at the definition of the DEFINE_PER_CPU_SECTION:

#define DEFINE_PER_CPU_SECTION(type, name, sec) \
__PCPU_ATTRS(sec) PER_CPU_DEF_ATTRIBUTES \
__typeof__(type) name

#define __PCPU_ATTRS(sec) \
__percpu __attribute__((section(PER_CPU_BASE_SECTION sec))) \
PER_CPU_ATTRIBUTES

where section is:

#define PER_CPU_BASE_SECTION ".data..percpu"

After all macros are expanded we will get a global per-cpu variable:
__attribute__((section(".data..percpu"))) int per_cpu_n

It means that we will have a per_cpu_n variable in the .data. .percpu section.
We can find this section in the vmlinux:


linux-cpu-1.md
linux-cpu-2.md
linux-cpu-3.md
linux-cpu-4.md
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/percpu-defs.h

.data..percpu 00013a58 0000000000000000 0000000001a5c000 00e00000 2**12
CONTENTS, ALLOC, LOAD, DATA

Ok, now we know that when we use the DEFINE_PER_CPU macro, a per-cpu
variable in the .data. .percpu section will be created. When the kernel initializes
it calls the setup_per_cpu_areas function which loads the .data..percpu
section multiple times, one section per CPU.

Let’s look at the per-CPU areas initialization process. It starts in the init/main.c
from the call of the setup_per_cpu_areas function which is defined in the
arch/x86 /kernel/setup_ percpu.c.

pr_info("NR_CPUS:%d nr_cpumask_bits:%d nr_cpu_ids:’%d nr_node_ids:%d\n",
NR_CPUS, nr_cpumask_bits, nr_cpu_ids, nr_node_ids);

The setup_per_cpu_areas starts from the output information about the maxi-
mum number of CPUs set during kernel configuration with the CONFIG_NR_CPUS
configuration option, actual number of CPUs, nr_cpumask_bits is the same
that NR_CPUS bit for the new cpumask operators and number of NUMA nodes.

We can see this output in the dmesg;:

$ dmesg | grep percpu
[ 0.000000] setup_percpu: NR_CPUS:8 nr_cpumask_bits:8 nr_cpu_ids:8 nr_node_ids:1

In the next step we check the percpu first chunk allocator. All percpu areas
are allocated in chunks. The first chunk is used for the static percpu variables.
The Linux kernel has percpu_alloc command line parameters which provides
the type of the first chunk allocator. We can read about it in the kernel
documentation:

percpu_alloc=  Select which percpu first chunk allocator to use.
Currently supported values are "embed" and "page".
Archs may support subset or none of the selectionmns.
See comments in mm/percpu.c for details on each
allocator. This parameter is primarily for debugging
and performance comparison.

The mm/percpu.c contains the handler of this command line option:
early_param("percpu_alloc", percpu_alloc_setup);

Where the percpu_alloc_setup function sets the pcpu_chosen_fc variable
depends on the percpu_alloc parameter value. By default the first chunk
allocator is auto:

enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;

If the percpu_alloc parameter is not given to the kernel command line, the
embed allocator will be used which embeds the first percpu chunk into bootmem
with the memblock. The last allocator is the first chunk page allocator which
maps the first chunk with PAGE_SIZE pages.
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As I wrote above, first of all we make a check of the first chunk allocator type in
the setup_per_cpu_areas. We check that first chunk allocator is not page:

if (pcpu_chosen_fc != PCPU_FC_PAGE) {

3

If it is not PCPU_FC_PAGE, we will use the embed allocator and allocate space for
the first chunk with the pcpu_embed_first_chunk function:

rc = pcpu_embed_first_chunk (PERCPU_FIRST_CHUNK_RESERVE,
dyn_size, atom_size,
pcpu_cpu_distance,
pcpu_fc_alloc, pcpu_fc_free);

As shown above, the pcpu_embed_first_chunk function embeds the first
percpu chunk into bootmem then we pass a couple of parameters to the
pcup_embed_first_chunk. They are as follows:

e PERCPU_FIRST_CHUNK_RESERVE - the size of the reserved space for the
static percpu variables;

¢ dyn_size - minimum free size for dynamic allocation in bytes;

e atom_size - all allocations are whole multiples of this and aligned to this
parameter;

e pcpu_cpu_distance - callback to determine distance between cpus;

e pcpu_fc_alloc - function to allocate percpu page;

e pcpu_fc_free - function to release percpu page.

We calculate all of these parameters before the call of the pcpu_embed_first_chunk:

const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE - PERCPU_FIRST_CHUNK
size_t atom_size;
#ifdef CONFIG_X86_64
atom_size = PMD_SIZE;
#else
atom_size = PAGE_SIZE;
#endif

If the first chunk allocator is PCPU_FC_PAGE, we will use the pcpu_page_first_chunk
instead of the pcpu_embed_first_chunk. After that percpu areas up, we setup
percpu offset and its segment for every CPU with the setup_percpu_segment
function (only for x86 systems) and move some early data from the arrays

to the percpu variables (x86_cpu_to_apicid, irq_stack_ptr and etc...).
After the kernel finishes the initialization process, we will have loaded N
.data. .percpu sections, where N is the number of CPUs, and the section used

by the bootstrap processor will contain an uninitialized variable created with
the DEFINE_PER_CPU macro.



The kernel provides an API for per-cpu variables manipulating:
o get_cpu_var(var)
e put_cpu_var(var)

Let’s look at the get_cpu_var implementation:

#define get_cpu_var(var) \
(x({ \
preempt_disable(); \
this_cpu_ptr(&var); \
)

The Linux kernel is preemptible and accessing a per-cpu variable requires us to
know which processor the kernel is running on. So, current code must not be
preempted and moved to the another CPU while accessing a per-cpu variable.
That’s why, first of all we can see a call of the preempt_disable function then
a call of the this_cpu_ptr macro, which looks like:

#define this_cpu_ptr(ptr) raw_cpu_ptr(ptr)
and
#define raw_cpu_ptr(ptr) per_cpu_ptr(ptr, 0)

where per_cpu_ptr returns a pointer to the per-cpu variable for the given cpu
(second parameter). After we’ve created a per-cpu variable and made modifica-
tions to it, we must call the put_cpu_var macro which enables preemption with
a call of preempt_enable function. So the typical usage of a per-cpu variable is
as follows:

get_cpu_var(var) ;
//Do something with the 'var'

put_cpu_var (var) ;

Let’s look at the per_cpu_ptr macro:

#define per_cpu_ptr(ptr, cpu) \
€t \
__verify_pcpu_ptr(ptr); \
SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))); \

b

As I wrote above, this macro returns a per-cpu variable for the given cpu. First
of all it calls __verify_pcpu_ptr:

#define __verify_pcpu_ptr(ptr)
do {
const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL;



(void) __vpp_verify;
} while (0)

which makes the given ptr type of const void __percpu *,

After this we can see the call of the SHIFT_PERCPU_PTR macro with two parame-
ters. As first parameter we pass our ptr and for second parameter we pass the
cpu number to the per_cpu_offset macro:

#define per_cpu_offset(x) (__per_cpu_offset[x])
which expands to getting the x element from the __per_cpu_offset array:
extern unsigned long __per_cpu_offset[NR_CPUS];

where NR_CPUS is the number of CPUs. The __per_cpu_offset array is filled
with the distances between cpu-variable copies. For example all per-cpu data
is X bytes in size, so if we access __per_cpu_offset[Y], X*Y will be accessed.
Let’s look at the SHIFT_PERCPU_PTR implementation:

#define SHIFT_PERCPU_PTR(__p, __offset) \

RELOC_HIDE((typeof (x(__p)) __kernel __force *)(__p), (__offset))

RELOC_HIDE just returns offset (typeof(ptr)) (__ptr + (off)) and it will
return a pointer to the variable.

That’s all! Of course it is not the full API, but a general overview. It can be
hard to start with, but to understand per-cpu variables you mainly need to
understand the include/linux/percpu-defs.h magic.

Let’s again look at the algorithm of getting a pointer to a per-cpu variable:

o The kernel creates multiple .data. .percpu sections (one per-cpu) during
initialization process;

o All variables created with the DEFINE_PER_CPU macro will be relocated to
the first section or for CPUO;

e __per_cpu_offset array filled with the distance (BOOT_PERCPU_OFFSET)
between .data..percpu sections;

e When the per_cpu_ptr is called, for example for getting a pointer on a
certain per-cpu variable for the third CPU, the __per_cpu_offset array
will be accessed, where every index points to the required CPU.

That’s all.

CPU masks

Introduction

Cpumasks is a special way provided by the Linux kernel to store information
about CPUs in the system. The relevant source code and header files which
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contains API for Cpumasks manipulation:

o include/linux/cpumask.h
e lib/cpumask.c
o kernel/cpu.c

As comment says from the include/linux/cpumask.h: Cpumasks provide a bitmap
suitable for representing the set of CPU’s in a system, one bit position per CPU
number. We already saw a bit about cpumask in the boot_cpu_init function
from the Kernel entry point part. This function makes first boot cpu online,
active and etc. . .:

set_cpu_online(cpu, true);
set_cpu_active(cpu, true);
set_cpu_present(cpu, true);
set_cpu_possible(cpu, true);

Before we will consider implementation of these functions, let’s consider all of
these masks.

The cpu_possible is a set of cpu ID’s which can be plugged in anytime during
the life of that system boot or in other words mask of possible CPUs contains
maximum number of CPUs which are possible in the system. It will be equal
to value of the NR_CPUS which is which is set statically via the CONFIG_NR_CPUS
kernel configuration option.

The cpu_present mask represents which CPUs are currently plugged in.

The cpu_online represents a subset of the cpu_present and indicates CPUs
which are available for scheduling or in other words a bit from this mask tells to
kernel is a processor may be utilized by the Linux kernel.

The last mask is cpu_active. Bits of this mask tells to Linux kernel is a task
may be moved to a certain processor.

All of these masks depend on the CONFIG_HOTPLUG_CPU configuration option and
if this option is disabled possible == present and active == online. The
implementations of all of these functions are very similar. Every function checks
the second parameter. If it is true, it calls cpumask_set_cpu otherwise it calls
cpumask_clear_cpu .

There are two ways for a cpumask creation. First is to use cpumask_t. It is
defined as:

typedef struct cpumask { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t;

It wraps the cpumask structure which contains one bitmask bits field. The
DECLARE_BITMAP macro gets two parameters:

¢ bitmap name;
e number of bits.
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and creates an array of unsigned long with the given name. Its implementation
is pretty easy:

#define DECLARE_BITMAP (name,bits) \
unsigned long name[BITS_TO_LONGS(bits)]

where BITS_TO_LONGS:

#define BITS_TO_LONGS(nr) DIV_ROUND_UP(nr, BITS_PER_BYTE * sizeof (long))
#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))

As we are focusing on the x86_64 architecture, unsigned long is 8-bytes size
and our array will contain only one element:

@ + @ -1 /@) =1

NR_CPUS macro represents the number of CPUs in the system and depends on the
CONFIG_NR_CPUS macro which is defined in include/linux/threads.h and looks
like this:

#ifndef CONFIG_NR_CPUS
#define CONFIG_NR_CPUS 1
#endif

#define NR_CPUS CONFIG_NR_CPUS

The second way to define cpumask is to use the DECLARE_BITMAP macro directly
and the to_cpumask macro which converts the given bitmap to struct cpumask
*:

#define to_cpumask(bitmap) \
((struct cpumask *)(1 7 (bitmap) \
(void *)sizeof (__check_is_bitmap(bitmap))))

We can see the ternary operator operator here which is true every time.
__check_is_bitmap inline function is defined as:

static inline int __check_is_bitmap(const unsigned long *bitmap)
{

return 1;

3

And returns 1 every time. We need it here for only one purpose: at compile time
it checks that a given bitmap is a bitmap, or in other words it checks that a given
bitmap has type - unsigned long *. So we just pass cpu_possible_bits to
the to_cpumask macro for converting an array of unsigned long to the struct
cpumask *.


https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/threads.h

cpumask API

As we can define cpumask with one of the method, Linux kernel provides API
for manipulating a cpumask. Let’s consider one of the function which presented
above. For example set_cpu_online. This function takes two parameters:

¢ Number of CPU;
o« CPU status;

Implementation of this function looks as:

void set_cpu_online(unsigned int cpu, bool online)

{
if (online) {
cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
} else {
cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
}
}

First of all it checks the second state parameter and calls cpumask_set_cpu
or cpumask_clear_cpu depends on it. Here we can see casting to the struct
cpumask * of the second parameter in the cpumask_set_cpu. In our case it is
cpu_online_bits which is a bitmap and defined as:

static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
The cpumask_set_cpu function makes only one call to the set_bit function:

static inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp)
{

set_bit(cpumask_check(cpu), cpumask_bits(dstp));
X

The set_bit function takes two parameters too, and sets a given bit (first
parameter) in the memory (second parameter or cpu_online_bits bitmap). We
can see here that before set_bit will be called, its two parameters will be passed
to the

e cpumask check;
e cpumask_bits.

Let’s consider these two macros. First if cpumask_check does nothing in our
case and just returns given parameter. The second cpumask_bits just returns
the bits field from the given struct cpumask * structure:

#define cpumask_bits(maskp) ((maskp)->bits)

Now let’s look on the set_bit implementation:



static __always_inline void

set_bit(long nr, volatile unsigned long *addr)

{
if (IS_IMMEDIATE(nr)) {
asm volatile(LOCK_PREFIX "orb %1,%0"
: CONST_MASK_ADDR(nr, addr)
"ig" ((u8)CONST_MASK(nr))
"memory") ;
} else {
asm volatile(LOCK_PREFIX "bts %1,%0"
: BITOP_ADDR(addr) : "Ir" (mr) : "memory");
¥
}

This function looks scary, but it is not so hard as it seems. First of all it passes
nr or number of the bit to the IS_IMMEDIATE macro which just calls the GCC
internal __builtin_constant_p function:

#define IS_IMMEDIATE (nr) (__builtin_constant_p(nr))

__builtin_constant_p checks that given parameter is known constant at
compile-time. As our cpu is not compile-time constant, the else clause will be
executed:

asm volatile(LOCK_PREFIX "bts %1,%0" : BITOP_ADDR(addr) : "Ir" (unr) : "memory");
Let’s try to understand how it works step by step:

LOCK_PREFIX is a x86 lock instruction. This instruction tells the cpu to occupy
the system bus while the instruction(s) will be executed. This allows the CPU to
synchronize memory access, preventing simultaneous access of multiple processors
(or devices - the DMA controller for example) to one memory cell.

BITOP_ADDR casts the given parameter to the (*(volatile long *) and adds
+m constraints. + means that this operand is both read and written by the
instruction. m shows that this is a memory operand. BITOP_ADDR is defined as:

#define BITOP_ADDR(x) "+m" (*(volatile long *) (x))

Next is the memory clobber. It tells the compiler that the assembly code performs
memory reads or writes to items other than those listed in the input and output
operands (for example, accessing the memory pointed to by one of the input
parameters).

Ir - immediate register operand.

The bts instruction sets a given bit in a bit string and stores the value of a given
bit in the CF flag. So we passed the cpu number which is zero in our case and
after set_bit is executed, it sets the zero bit in the cpu_online_bits cpumask.
It means that the first cpu is online at this moment.



Besides the set_cpu_* API, cpumask of course provides another API for
cpumasks manipulation. Let’s consider it in short.

Additional cpumask API

cpumask provides a set of macros for getting the numbers of CPUs in various
states. For example:

#define num_online_cpus() cpumask_weight (cpu_online_mask)

This macro returns the amount of online CPUs. It calls the cpumask_weight
function with the cpu_online_mask bitmap (read about it). Thecpumask_weight
function makes one call of the bitmap_weight function with two parameters:

e cpumask bitmap;
e nr_cpumask_bits - which is NR_CPUS in our case.

static inline unsigned int cpumask_weight(const struct cpumask *srcp)
{
return bitmap_weight (cpumask_bits(srcp), nr_cpumask_bits);

}

and calculates the number of bits in the given bitmap. Besides the
num_online_cpus, cpumask provides macros for the all CPU states:

e num_ possible_ cpus;
e num_ active_ cpus;
o cpu_ online;

e cpu_ possible.

and many more.

Besides that the Linux kernel provides the following API for the manipulation
of cpumask:

e for_each_cpu - iterates over every cpu in a mask;

e for_each_cpu_not - iterates over every cpu in a complemented mask;
e cpumask_clear_cpu - clears a cpu in a cpumask;

e cpumask_test_cpu - tests a cpu in a mask;

o cpumask_setall - set all cpus in a mask;

e cpumask_size - returns size to allocate for a ‘struct cpumask’ in bytes;

and many many more. . .

Links

¢ cpumask documentation
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The initcall mechanism

Introduction

As you may understand from the title, this part will cover an interesting and
important concept in the Linux kernel which is called - initcall. We already
saw definitions like these:

early_param('"debug", debug_kernel);
or
arch_initcall(init_pit_clocksource);

in some parts of the Linux kernel. Before we will see how this mechanism is
implemented in the Linux kernel, we must know actually what is it and how the
Linux kernel uses it. Definitions like these represent a callback function which is
will be called during initialization of the Linux kernel of right after. Actually
the main point of the initcall mechanism is to determine correct order of the
built-in modules and subsystems initialization. For example let’s look at the
following function:

static int __init nmi_warning_debugfs(void)
{
debugfs_create_u64("nmi_longest_ns", 0644,
arch_debugfs_dir, &nmi_longest_ns);
return O;

3

from the arch/x86/kernel/nmi.c source code file. As we may see it just creates
the nmi_longest_ns debugfs file in the arch_debugfs_dir directory. Actu-
ally, this debugfs file may be created only after the arch_debugfs_dir will
be created. Creation of this directory occurs during the architecture-specific
initialization of the Linux kernel. Actually this directory will be created in the
arch_kdebugfs_init function from the arch/x86/kernel/kdebugfs.c source code
file. Note that the arch_kdebugfs_init function is marked as initcall too:

arch_initcall(arch_kdebugfs_init);

The Linux kernel calls all architecture-specific initcalls before the fs re-
lated initcalls. So, our nmi_longest_ns file will be created only after the
arch_kdebugfs_dir directory will be created. Actually, the Linux kernel pro-
vides eight levels of main initcalls:

e early;

e core;

e postcore;
e arch;

e subsys;
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o fs;
e device;
e late.

All of their names are represented by the initcall_level_names array which
is defined in the init/main.c source code file:

static char #*initcall_level _names[] __initdata = {
"early",
"core",
"postcore",
"arch",
"subsys",
negn
"device",
"late",

};

All functions which are marked as initcall by these identifiers, will be called
in the same order or at first early initcalls will be called, at second core
initcalls and etc. From this moment we know a little about initcall mecha-
nism, so we can start to dive into the source code of the Linux kernel to see how
this mechanism is implemented.

Implementation initcall mechanism in the Linux kernel

The Linux kernel provides a set of macros from the include/linux/init.h header
file to mark a given function as initcall. All of these macros are pretty simple:

#define early_initcall(fn) __define_initcall(fn, early)
#define core_initcall(fn) __define_initcall(fn, 1)
#define postcore_initcall(fn) __define_initcall(fn, 2)
#define arch_initcall(fn) __define_initcall(fn, 3)
#define subsys_initcall(fn) __define_initcall(fn, 4)
#define fs_initcall(fn) __define_initcall(fn, 5)
#define device_initcall(fn) __define_initcall(fn, 6)
#define late_initcall(fn) __define_initcall(fn, 7)

and as we may see these macros just expand to the call of the __define_initcall
macro from the same header file. Moreover, the __define_initcall macro
takes two arguments:

e fn - callback function which will be called during call of initcalls of the
certain level;

e id - identifier to identify initcall to prevent error when two the same
initcalls point to the same handler.

The implementation of the __define_initcall macro looks like:
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#define __define_initcall(fn, id) \
static initcall_t __initcall_##fn##id __used \
__attribute__((__section__(".initcall" #id ".init"))) = fn; \
LTO_REFERENCE_INITCALL(__initcall_##fn##id)

To understand the __define_initcall macro, first of all let’s look at the
initcall_t type. This type is defined in the same header file and it represents
pointer to a function which returns pointer to integer which will be result of the
initcall:

typedef int (*initcall_t) (void);

Now let’s return to the _—define_initcall macro. The ## provides ability to
concatenate two symbols. In our case, the first line of the __define_initcall
macro produces definition of the given function which is located in the
.initcall id .init ELF section and marked with the following gcc at-
tributes: __initcall_function_name_id and __used. If we will look in the
include/asm-generic/vmlinux.lds.h header file which represents data for the
kernel linker script, we will see that all of initcalls sections will be placed in
the .data section:

#define INIT_CALLS \
VMLINUX_SYMBOL(__initcall_start) = .;
*x(.initcallearly.init)
INIT_CALLS_LEVEL(0)
INIT_CALLS_LEVEL(1)
INIT_CALLS_LEVEL(2)
INIT_CALLS_LEVEL(3)

INIT_CALLS LEVEL(4)
INIT_CALLS_LEVEL(5)

INIT_CALLS LEVEL(rootfs)
INIT_CALLS_LEVEL(6)
INIT_CALLS_LEVEL(7)
VMLINUX_SYMBOL(__initcall_end) = .;

P A A A L A

#define INIT_DATA_SECTION(initsetup_align) \

.init.data : AT(ADDR(.init.data) - LOAD_OFFSET) { \
. \
INIT_CALLS \
\
b
The second attribute - __used is defined in the include/linux/compiler-gce.h

header file and it expands to the definition of the following gcc attribute:
#define __used __attribute__((__used__))

which prevents variable defined but not used warning. The last line of the
__define_initcall macro is:
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LTO_REFERENCE_INITCALL(_ _initcall_##fn##id)

depends on the CONFIG_LTO kernel configuration option and just provides stub
for the compiler Link time optimization:

#ifdef CONFIG_LTO
#define LTO_REFERENCE_INITCALL(x) \
static __used __exit void *reference_##x(void) \

{ \
return &x; \
}
#telse
#define LTO_REFERENCE_INITCALL(x)
#endif

In order to prevent any problem when there is no reference to a variable in
a module, it will be moved to the end of the program. That’s all about the
__define_initcall macro. So, all of the *_initcall macros will be expanded
during compilation of the Linux kernel, and all initcalls will be placed in their
sections and all of them will be available from the .data section and the Linux
kernel will know where to find a certain initcall to call it during initialization
process.

As initcalls can be called by the Linux kernel, let’s look how the Linux
kernel does this. This process starts in the do_basic_setup function from the
init/main.c source code file:

static void __init do_basic_setup(void)

{

do_initcalls();

3

which is called during the initialization of the Linux kernel, right after main steps
of initialization like memory manager related initialization, CPU subsystem and
other already finished. The do_initcalls function just goes through the array
of initcall levels and call the do_initcall_level function for each level:

static void __init do_initcalls(void)
{

int level;

for (level = 0; level < ARRAY_SIZE(initcall_levels) - 1; level++)
do_initcall_level(level);
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}

The initcall_levels array is defined in the same source code file and contains
pointers to the sections which were defined in the __define_initcall macro:

static initcall_t *initcall_levels[] __initdata = {

__initcallO_start,
__initcalll_start,
__initcall2_start,
__initcall3_start,
__initcall4_start,
__initcallb_start,
__initcall6_start,
__initcall7_start,
__initcall_end,

};

If you are interested, you can find these sections in the arch/x86/kernel/vmlinux.1ds
linker script which is generated after the Linux kernel compilation:

.init.data : AT(ADDR(.init.data) - Oxfffffff£80000000) {

__initcall_start = .;
*(.initcallearly.init)
__initcallO_start = .;
*(.initcall0.init)
*(.initcallOs.init)
__initcalll_start = .;

}

If you are not familiar with this then you can know more about linkers in the
special part of this book.

As we just saw, the do_initcall_level function takes one parameter - level
of initcall and does following two things: First of all this function parses
the initcall_command_line which is copy of usual kernel command line which
may contain parameters for modules with the parse_args function from the
kernel /params.c source code file and call the do_on_initcall function for each
level:

for (fn = initcall_levels[levell; fn < initcall_levels[level+1]; fn++)
do_one_initcall (*fn);

The do_on_initcall does main job for us. As we may see, this function takes
one parameter which represent initcall callback function and does the call of
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the given callback:

int __init_or_module do_one_initcall(initcall_t fn)
{

int count = preempt_count();

int ret;

char msgbuf [64];

if (initcall_blacklisted(fn))
return -EPERM;

if (initcall_debug)

ret = do_one_initcall_debug(fn);
else

ret = fn();

msgbuf [0] = 0;

if (preempt_count() != count) {
sprintf (msgbuf, "preemption imbalance ");
preempt_count_set(count) ;

}

if (irgs_disabled()) {
strlcat(msgbuf, "disabled interrupts ", sizeof(msgbuf));
local_irq_enable();

}

WARN (msgbuf [0], "initcall %pF returned with %s\n", fn, msgbuf);

return ret;

3

Let’s try to understand what does the do_on_initcall function does. First
of all we increase preemption counter so that we can check it later to be
sure that it is not imbalanced. After this step we can see the call of the
initcall_backlist function which goes over the blacklisted_initcalls list
which stores blacklisted initcalls and releases the given initcall if it is
located in this list:

list_for_each_entry(entry, &blacklisted_initcalls, next) {
if (!strcmp(fn_name, entry->buf)) {
pr_debug("initcall %s blacklisted\n", fn_name);
kfree(fn_name) ;
return true;

}

The blacklisted initcalls stored in the blacklisted_initcalls list and this
list is filled during early Linux kernel initialization from the Linux kernel com-
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mand line.

After the blacklisted initcalls will be handled, the next part of code does
directly the call of the initcall:

if (initcall_debug)

ret = do_one_initcall_debug(fn);
else

ret = fn();

Depends on the value of the initcall_debug variable, the do_one_initcall_debug
function will call initcall or this function will do it directly via fn(). The
initcall_debug variable is defined in the same source code file:

bool initcall_debug;

and provides ability to print some information to the kernel log buffer. The value
of the variable can be set from the kernel commands via the initcall_debug
parameter. As we can read from the documentation of the Linux kernel command
line:

initcall_debug [KNL] Trace initcalls as they are executed. Useful
for working out where the kernel is dying during
startup.

And that’s true. If we will look at the implementation of the do_one_initcall_debug
function, we will see that it does the same as the do_one_initcall function

or i.e. the do_one_initcall_debug function calls the given initcall and
prints some information (like the pid of the currently running task, duration

of execution of the initcall and etc.) related to the execution of the given
initcall:

static int __init_or_module do_one_initcall_debug(initcall_t fn)
{

ktime_t calltime, delta, rettime;

unsigned long long duration;

int ret;

printk (KERN_DEBUG '"calling %pF @ %i\n", fn, task_pid_nr(current));

calltime = ktime_get();

ret = fn();

rettime = ktime_get();

delta = ktime_sub(rettime, calltime);

duration = (unsigned long long) ktime_to_ns(delta) >> 10;

printk (KERN_DEBUG "initcall %pF returned %d after ’11ld usecs\n",
fn, ret, duration);

return ret;
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As an initcall was called by the one of the do_one_initcall or
do_one_initcall_debug functions, we may see two checks in the end of
the do_one_initcall function. The first one checks the amount of possible
__preempt_count_add and __preempt_count_sub calls inside of the executed
initcall, and if this value is not equal to the previous value of the preemptible
counter, we add the preemption imbalance string to the message buffer and
set correct value of the preemptible counter:

if (preempt_count() !'= count) {
sprintf (msgbuf, "preemption imbalance ");
preempt_count_set(count) ;

}

Later this error string will be printed. The last check the state of local IRQs
and if they are disabled, we add the disabled interrupts strings to the our
message buffer and enable IRQs for the current processor to prevent the state
when IRQs were disabled by an initcall and didn’t enable again:

if (irgs_disabled()) {
strlcat(msgbuf, "disabled interrupts ", sizeof (msgbuf));
local_irq_enable();

}

That’s all. In this way the Linux kernel does initialization of many subsystems
in a correct order. From now on, we know what is the initcall mechanism in
the Linux kernel. In this part, we covered main general portion of the initcall
mechanism but we left some important concepts. Let’s make a short look at
these concepts.

First of all, we have missed one level of initcalls, this is rootfs initcalls.
You can find definition of the rootfs_initcall in the include/linux/init.h
header file along with all similar macros which we saw in this part:

#tdefine rootfs_initcall(fn) __define_initcall(fn, rootfs)

As we may understand from the macro’s name, its main purpose is to store
callbacks which are related to the rootfs. Besides this goal, it may be useful to
initialize other stuffs after initialization related to filesystems level only if devices
related stuff are not initialized. For example, the decompression of the initramfs
which occurred in the populate_rootfs function from the init/initramfs.c source
code file:

rootfs_initcall(populate_rootfs);
From this place, we may see familiar output:
[ 0.199960] Unpacking initramfs...

Besides the rootfs_initcall level, there are additional console_initcall,
security_initcall and other secondary initcall levels. The last thing
that we have missed is the set of the *_initcall_sync levels. Almost each
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*_initcall macro that we have seen in this part, has macro companion with
the _sync prefix:

#define core_initcall_sync(fn) __define_initcall(fn, 1s)
#define postcore_initcall_sync(fn) __define_initcall(fn, 2s)
#define arch_initcall_sync(fn) __define_initcall(fn, 3s)
#define subsys_initcall_sync(fn) __define_initcall(fn, 4s)
#define fs_initcall_sync(fn) __define_initcall(fn, 5s)
#define device_initcall_sync(fn) __define_initcall(fn, 6s)
#define late_initcall_sync(fn) __define_initcall(fn, 7s)

The main goal of these additional levels is to wait for completion of all a module
related initialization routines for a certain level.

That’s all.

Conclusion

In this part we saw the important mechanism of the Linux kernel which allows
to call a function which depends on the current state of the Linux kernel during
its initialization.

If you have questions or suggestions, feel free to ping me in twitter 0xAX, drop
me email or just create issue.

Please note that English is not my first language and I am really sorry
for any inconvenience. If you found any mistakes please send me PR
to linux-insides..

Links
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Notification Chains in Linux Kernel

Introduction

The Linux kernel is huge piece of C code which consists from many different
subsystems. Each subsystem has its own purpose which is independent of other
subsystems. But often one subsystem wants to know something from other sub-
system(s). There is special mechanism in the Linux kernel which allows to solve
this problem partly. The name of this mechanism is - notification chains
and its main purpose to provide a way for different subsystems to subscribe on
asynchronous events from other subsystems. Note that this mechanism is only for
communication inside kernel, but there are other mechanisms for communication
between kernel and userspace.

Before we will consider notification chains API and implementation of this
API, let’s look at Notification chains mechanism from theoretical side as we
did it in other parts of this book. Everything which is related to notification
chains mechanism is located in the include/linux/notifier.h header file and
kernel/notifier.c source code file. So let’s open them and start to dive.

Notification Chains related data structures

Let’s start to consider notification chains mechanism from related data
structures. As I wrote above, main data structures should be located in the
include/linux/notifier.h header file, so the Linux kernel provides generic API
which does not depend on certain architecture. In general, the notification
chains mechanism represents a list (that’s why it named chains) of callback
functions which are will be executed when an event will be occurred.

All of these callback functions are represented as notifier_fn_t type in the
Linux kernel:

typedef int (*notifier_fn_t) (struct notifier_block #*nb, unsigned long action, void *data);
So we may see that it takes three following arguments:

e nb - is linked list of function pointers (will see it now);

e action - is type of an event. A notification chain may support multiple
events, so we need this parameter to distinguish an event from other events;

e data - is storage for private information. Actually it allows to provide
additional data information about an event.

Additionally we may see that notifier_fn_t returns an integer value. This
integer value maybe one of:

e NOTIFY_DONE - subscriber does not interested in notification;
e NOTIFY_OK - notification was processed correctly;
e NOTIFY_BAD - something went wrong;
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e NOTIFY_STOP - notification is done, but no further callbacks should be
called for this event.

All of these results defined as macros in the include/linux/notifier.h header file:

#define NOTIFY_DONE 0x0000

#define NOTIFY_OK 0x0001

#define NOTIFY_BAD (NOTIFY_STOP_MASK|0x0002)
#define NOTIFY_STOP (NOTIFY_OK|NOTIFY_STOP_MASK)

Where NOTIFY_STOP_MASK represented by the:
#define NOTIFY_STOP_MASK 0x8000
macro and means that callbacks will not be called during next notifications.

Each part of the Linux kernel which wants to be notified on a certain event
will should provide own notifier_fn_t callback function. Main role of the
notification chains mechanism is to call certain callbacks when an asyn-
chronous event occurred.

The main building block of the notification chains mechanism is the
notifier_block structure:

struct notifier_block {
notifier_fn_t notifier_call;
struct notifier_block __rcu *next;
int priority;

};

which is defined in the include/linux/notifier.h file. This struct contains pointer
to callback function - notifier_call, link to the next notification callback and
priority of a callback function as functions with higher priority are executed
first.

The Linux kernel provides notification chains of four following types:

o Blocking notifier chains;
¢ SRCU notifier chains;

e Atomic notifier chains;
o Raw notifier chains.

Let’s consider all of these types of notification chains by order:

In the first case for the blocking notifier chains, callbacks will be
called /executed in process context. This means that the calls in a notification
chain may be blocked.

The second SRCU notifier chains represent alternative form of blocking
notifier chains. In the first case, blocking notifier chains uses rw_semaphore
synchronization primitive to protect chain links. SRCU notifier chains run in
process context too, but uses special form of RCU mechanism which is permissible
to block in an read-side critical section.
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In the third case for the atomic notifier chains runs in interrupt or atomic
context and protected by spinlock synchronization primitive. The last raw
notifier chains provides special type of notifier chains without any locking
restrictions on callbacks. This means that protection rests on the shoulders of
caller side. It is very useful when we want to protect our chain with very specific
locking mechanism.

If we will look at the implementation of the notifier_block structure, we will
see that it contains pointer to the next element from a notification chain list, but
we have no head. Actually a head of such list is in separate structure depends on
type of a notification chain. For example for the blocking notifier chains:

struct blocking notifier_head {
struct rw_semaphore rwsem;
struct notifier_block __rcu *head;

};
or for atomic notification chains:

struct atomic_notifier_head {
spinlock_t lock;
struct notifier_block __rcu *head;

};

Now as we know a little about notification chains mechanism let’s consider
implementation of its API.

Notification Chains

Usually there are two sides in a publish/subscriber mechanisms. One side who
wants to get notifications and other side(s) who generates these notifications.
We will consider notification chains mechanism from both sides. We will con-
sider blocking notification chains in this part, because of other types of
notification chains are similar to it and differs mostly in protection mechanisms.

Before a notification producer is able to produce notification, first of all it should
initialize head of a notification chain. For example let’s consider notification
chains related to kernel loadable modules. If we will look in the kernel/module.c
source code file, we will see following definition:

static BLOCKING_NOTIFIER_HEAD (module_notify_list);

which defines head for loadable modules blocking notifier chain. The
BLOCKING_NOTIFIER_HEAD macro is defined in the include/linux/notifier.h
header file and expands to the following code:

#define BLOCKING INIT NOTIFIER_HEAD(name) do { \
init_rwsem(&(name)->rwsem) ; \
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(name)->head = NULL; \
} while (0)

So we may see that it takes name of a name of a head of a blocking no-
tifier chain and initializes read/write semaphore and set head to NULL. Be-
sides the BLOCKING_INIT_NOTIFIER_HEAD macro, the Linux kernel additionally
provides ATOMIC_INIT_NOTIFIER_HEAD, RAW_INIT_NOTIFIER_HEAD macros and
srcu_init_notifier function for initialization atomic and other types of notifi-
cation chains.

After initialization of a head of a notification chain, a subsystem which wants
to receive notification from the given notification chain it should register with
certain function which is depends on type of notification. If you will look in the
include/linux/notifier.h header file, you will see following four function for this:

extern int atomic_notifier_chain_register(struct atomic_notifier_head *nh,
struct notifier_block *nb);

extern int blocking_notifier_chain_register(struct blocking_notifier_head *nh,
struct notifier_block *nb);

extern int raw_notifier_chain_register(struct raw_notifier_head *nh,
struct notifier_block *nb);

extern int srcu_notifier_chain_register(struct srcu_notifier_head *nh,
struct notifier_block *nb);

As T already wrote above, we will cover only blocking notification chains in the
part, so let’s consider implementation of the blocking notifier_chain_register
function. Implementation of this function is located in the kernel/notifier.c
source code file and as we may see the blocking_notifier_chain_register
takes two parameters:

e nh - head of a notification chain;
e nb - notification descriptor.

Now let’s look at the implementation of the blocking_notifier_chain_register
function:

int raw_notifier_chain_register(struct raw_notifier_head *nh,
struct notifier_block *n)

{

return notifier_chain_register (&nh->head, n);

3

As we may see it just returns result of the notifier_chain_register function
from the same source code file and as we may understand this function does all
job for us. Definition of the notifier_chain_register function looks:

int blocking_notifier_chain_register(struct blocking notifier_head *nh,
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struct notifier_block *n)

{
int ret;
if (unlikely(system_state == SYSTEM_BOOTING))

return notifier_chain_register (&nh->head, n);

down_write (&nh->rwsem) ;
ret = notifier_chain_register(&nh->head, n);
up_write(&nh->rwsem) ;
return ret;

}

As we may see implementation of the blocking_notifier_chain_register is
pretty simple. First of all there is check which check current system state and
if a system in rebooting state we just call the notifier_chain_register. In
other way we do the same call of the notifier_chain_register but as you
may see this call is protected with read/write semaphores. Now let’s look at the
implementation of the notifier_chain_register function:

static int notifier_chain_register(struct notifier_block **nl,
struct notifier_block *n)
{
while ((*nl) != NULL) {
if (n->priority > (*nl)->priority)
break;
nl = &((*nl)->next);
}
n->next = *nl;
rcu_assign_pointer(*nl, n);
return O;

}

This function just inserts new notifier_block (given by a subsystem which
wants to get notifications) to the notification chain list. Besides subscribing
on an event, subscriber may unsubscribe from a certain events with the set of
unsubscribe functions:

extern int atomic_notifier_chain_unregister(struct atomic_notifier_head #*nh,
struct notifier_block *nb);

extern int blocking_notifier_chain_unregister(struct blocking notifier_head *nh,
struct notifier_block *nb);

extern int raw_notifier_chain_unregister(struct raw_notifier_head #*nh,
struct notifier_block *nb);

extern int srcu_notifier_chain_unregister(struct srcu_notifier_head #*nh,
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struct notifier_block *nb);

When a producer of notifications wants to notify subscribers about an event,
the *.notifier_call_chain function will be called. As you already may guess
each type of notification chains provides own function to produce notification:

extern int atomic_notifier_call_chain(struct atomic_notifier_head *nh,
unsigned long val, void *v);

extern int blocking_notifier_call_chain(struct blocking_notifier_head *nh,
unsigned long val, void *v);

extern int raw_notifier_call_chain(struct raw_notifier_head *nh,
unsigned long val, void *v);

extern int srcu_notifier_call_chain(struct srcu_notifier_head *nh,
unsigned long val, void *v);

Let’s consider implementation of the blocking notifier_call_chain function.
This function is defined in the kernel/notifier.c source code file:

int blocking_notifier_call_chain(struct blocking_notifier_head #*nh,
unsigned long val, void *v)
{
return __blocking_notifier_call_chain(nh, val, v, -1, NULL);

3

and as we may see it just returns result of the __blocking notifier_call_chain
function. As we may see, the blocking notifer_call_chain takes three
parameters:

e nh - head of notification chain list;
e val - type of a notification;
e v - input parameter which may be used by handlers.

But the __blocking notifier_call_chain function takes five parameters:

int __blocking notifier_call_chain(struct blocking _notifier_head *nh,
unsigned long val, void *v,
int nr_to_call, int *nr_calls)

3

Where nr_to_call and nr_calls are number of notifier functions to be called
and number of sent notifications. As you may guess the main goal of the
__blocking_notifer_call_chain function and other functions for other notifi-
cation types is to call callback function when an event occurred. Implementation
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of the __blocking notifier_call_chain is pretty simple, it just calls the
notifier_call_chain function from the same source code file protected with
read/write semaphore:

int __blocking notifier_call_chain(struct blocking notifier_head *nh,
unsigned long val, void *v,
int nr_to_call, int *nr_calls)

{
int ret = NOTIFY_DONE;
if (rcu_access_pointer(nh->head)) {
down_read (&nh->rwsem) ;
ret = notifier_call_chain(&nh->head, val, v, nr_to_call,
nr_calls);
up_read (&nh->rwsemn) ;
¥
return ret;
}

and returns its result. In this case all job is done by the notifier_call_chain
function. Main purpose of this function informs registered notifiers about an
asynchronous event:

static int notifier_call_chain(struct notifier_block **nl,
unsigned long val, void *v,
int nr_to_call, int *nr_calls)

ret = nb->notifier_call(nb, val, v);

return ret;
}
That’s all. In generall all looks pretty simple.

Now let’s consider on a simple example related to loadable modules. If we will
look in the kernel/module.c. As we already saw in this part, there is:

static BLOCKING_NOTIFIER_HEAD(module_notify_list);

definition of the module_notify_list in the kernel/module.c source code file.
This definition determines head of list of blocking notifier chains related to kernel
modules. There are at least three following events:

« MODULE_STATE_LIVE
« MODULE_STATE_COMING
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« MODULE_STATE GOING

in which maybe interested some subsystems of the Linux kernel. For
example tracing of kernel modules states. Instead of direct call of the
atomic_notifier_chain_register, blocking _notifier_chain_register
and etc., most notification chains come with a set of wrappers used to register
to them. Registatrion on these modules events is going with the help of such
wrapper:

int register_module_notifier(struct notifier_block *nb)
{
return blocking notifier_chain_register (&module_notify_list, nb);

}

If we will look in the kernel/tracepoint.c source code file, we will see such
registration during initialization of tracepoints:

static __init int init_tracepoints(void)

{
int ret;
ret = register_module_notifier(&tracepoint_module_nb);
if (ret)
pr_warn("Failed to register tracepoint module enter notifier\n");
return ret;
}

Where tracepoint_module_nb provides callback function:

static struct notifier_block tracepoint_module_nb = {

.notifier_call = tracepoint_module_notify,

.priority = 0,
3
When one of the MODULE_STATE_LIVE, MODULE_STATE_COMING or MODULE_STATE_GOING
events occurred. For example the MODULE_STATE_LIVE the MODULE_STATE_COMING
notifications will be sent during execution of the init__module system call.
Or for example MODULE_STATE_GOING will be sent during execution of the
delete__module system call:

SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
unsigned int, flags)

{

blocking_notifier_call_chain(&module_notify_list,
MODULE_STATE_GOING, mod);
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3

Thus when one of these system call will be called from userspace, the
Linux kernel will send certain notification depends on a system call and the
tracepoint_module_notify callback function will be called.

That’s all.

Links

e C programming langauge
o API

o callback

L] RCU

e spinlock

¢ loadable modules

e semaphore

e tracepoints

e system call

e init__module system call
o delete__module

e previous part
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Data Structures in the Linux Kernel

Linux kernel provides different implementations of data structures like doubly
linked list, B+ tree, priority heap and many many more.

This part considers the following data structures and algorithms:

e Doubly linked list
¢ Radix tree
o Bit arrays

Data Structures in the Linux Kernel

Doubly linked list

Linux kernel provides its own implementation of doubly linked list, which you
can find in the include/linux/list.h. We will start Data Structures in the
Linux kernel from the doubly linked list data structure. Why? Because it is
very popular in the kernel, just try to search

First of all, let’s look on the main structure in the include/linux/types.h:

struct list_head {
struct list_head *next, *prev;

};

You can note that it is different from many implementations of doubly linked
list which you have seen. For example, this doubly linked list structure from the
glib library looks like :

struct GList {
gpointer data;
GList *next;
GList *prev;
3

Usually a linked list structure contains a pointer to the item. The implementation
of linked list in Linux kernel does not. So the main question is - where does
the list store the data?. The actual implementation of linked list in the
kernel is - Intrusive list. An intrusive linked list does not contain data in
its nodes - A node just contains pointers to the next and previous node and list
nodes part of the data that are added to the list. This makes the data structure
generic, so it does not care about entry data type anymore.

For example:

struct nmi_desc {
spinlock_t lock;
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struct list_head head;

};

Let’s look at some examples to understand how list_head is used in the kernel.
As I already wrote about, there are many, really many different places where
lists are used in the kernel. Let’s look for an example in miscellaneous character
drivers. Misc character drivers API from the drivers/char/misc.c is used for
writing small drivers for handling simple hardware or virtual devices. Those

drivers share same major number:

#define MISC_MAJOR

10

but have their own minor number. For example you can see it with:

1ls -1 /dev | grep 10
Crw——-—-—-- 1 root root
drwxr-xr-x 10 root root
Crw——--—--- 1 root root
Crw——-—--—-- 1 root root
drwxr-xr-x 2 root root
CIrW-YwW—rw- 1 root root
Crw——-———-- 1 root root
Crw——-—-—-- 1 root root
crw-rw——--+ 1 root kvm
Crw-rw——-- 1 root disk
crw——-—--—--- 1 root root
Crw——-—-——-- 1 root root
Crw——-———-- 1 root root
Crw——--—-—--- 1 root root
Crw-r-——-- 1 root kmem
brw-rw---- 1 root disk
crw—-w———— 1 root tty
Crw-rw——-- 1 root dialout
Crw——--—-—-- 1 root root
Crw——-—--—-- 1 root root

10,

10,
10,

10,
10,
10,
10,
10,
10,
10,
10,
10,
10,

1,

4,

4,
10,
10,

235
200
62
203
100
229
228
183
232
237
227
59
61
60
144
10
10
74
63
137

Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar

21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21

12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:

01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01

autofs

cpu
cpu_dma_latency
cuse

dri

fuse

hpet

hwrng

kvm

loop-control
mcelog
memory_bandwidth
network_latency
network_throughput
nvram

raml0

tty10

ttyS10
vga_arbiter

vhci

Now let’s have a close look at how lists are used in the misc device drivers. First
of all, let’s look on miscdevice structure:

struct miscdevice

{

int minor;

const char *name;

const struct file_operations *fops;
struct list_head list;

struct device *parent;

struct device *this_device;

const char *nodename;
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mode_t mode;

};

We can see the fourth field in the miscdevice structure - 1ist which is a list
of registered devices. In the beginning of the source code file we can see the
definition of misc_ list:

static LIST_HEAD(misc_list);
which expands to the definition of variables with 1ist_head type:

#define LIST_HEAD(name) \
struct list_head name = LIST_HEAD_INIT(name)

and initializes it with the LIST_HEAD_INIT macro, which sets previous and next
entries with the address of variable - name:

#define LIST_HEAD_INIT(name) { &(name), &(name) }

Now let’s look on the misc_register function which registers a miscellaneous
device. At the start it initializes miscdevice->1ist with the INIT_LIST_HEAD
function:

INIT_LIST_HEAD (&misc->list);
which does the same as the LIST_HEAD_INIT macro:

static inline void INIT_LIST_HEAD(struct list_head *1list)
{

list->next
list->prev

list;
list;

}

In the next step after a device is created by the device_create function, we
add it to the miscellaneous devices list with:

list_add(&misc->1list, &misc_list);

Kernel 1ist.h provides this API for the addition of a new entry to the list. Let’s
look at its implementation:

static inline void list_add(struct list_head *new, struct list_head *head)

{
__list_add(new, head, head->next);

}
It just calls internal function __list_add with the 3 given parameters:

e new - new entry.
e head - list head after which the new item will be inserted.
o head->next - next item after list head.

Implementation of the __list_add is pretty simple:



static inline void __list_add(struct list_head *new,
struct list_head *prev,
struct list_head *next)

{
next->prev = new,;
new->next = next;
new->prev = prev;
prev->next = new;
b

Here we add a new item between prev and next. So misc list which we defined
at the start with the LIST_HEAD_INIT macro will contain previous and next
pointers to the miscdevice->list.

There is still one question: how to get list’s entry. There is a special macro:

#define list_entry(ptr, type, member) \
container_of (ptr, type, member)

which gets three parameters:

e ptr - the structure list_ head pointer;
e type - structure type;
e member - the name of the list__head within the structure;

For example:
const struct miscdevice *p = list_entry(v, struct miscdevice, list)

After this we can access to any miscdevice field with p->minor or p—>name and
etc... Let’s look on the list_entry implementation:

#define list_entry(ptr, type, member) \
container_of (ptr, type, member)

As we can see it just calls container_of macro with the same arguments. At
first sight, the container_of looks strange:

#define container_of (ptr, type, member) ({ \
const typeof( ((type *)0)->member ) *__mptr = (ptr); \
(type *) ( (char *)__mptr - offsetof (type,member) );})

First of all you can note that it consists of two expressions in curly brackets.
The compiler will evaluate the whole block in the curly braces and use the value
of the last expression.

For example:
#include <stdio.h>
int main() {

int i = 0;
printf("i = %d\n", ({++i; ++i;}));



return O;

}
will print 2.

The next point is typeof, it’s simple. As you can understand from its name, it
just returns the type of the given variable. When I first saw the implementation
of the container_of macro, the strangest thing I found was the zero in the
((type *)0) expression. Actually this pointer magic calculates the offset of the
given field from the address of the structure, but as we have 0 here, it will be
just a zero offset along with the field width. Let’s look at a simple example:

#include <stdio.h>

struct s {
int fieldl;
char field2;
char field3;
}s;

int main() {
printf ("%p\n", &((struct s*)0)->field3);
return 0;

}
will print 0x5.

The next offsetof macro calculates offset from the beginning of the structure
to the given structure’s field. Its implementation is very similar to the previous
code:

#define offsetof (TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)

Let’s summarize all about container_of macro. The container_of macro
returns the address of the structure by the given address of the structure’s field
with 1ist_head type, the name of the structure field with 1ist_head type and
type of the container structure. At the first line this macro declares the __mptr
pointer which points to the field of the structure that ptr points to and assigns
ptr to it. Now ptr and __mptr point to the same address. Technically we don’t
need this line but it’s useful for type checking. The first line ensures that the
given structure (type parameter) has a member called member. In the second
line it calculates offset of the field from the structure with the offsetof macro
and subtracts it from the structure address. That’s all.

Of course list_add and 1list_entry is not the only functions which
<linux/list.h> provides. Implementation of the doubly linked list provides
the following API:

. hstiadd
o list add_tail



o list del

o list_replace

o list_move

o list is last

o list__empty

e list_ cut_ position

o list_ splice

o list for each

e list_for_each_ entry

and many more.

Data Structures in the Linux Kernel

Radix tree

As you already know linux kernel provides many different libraries and functions
which implement different data structures and algorithms. In this part we will
consider one of these data structures - Radix tree. There are two files which are
related to radix tree implementation and API in the linux kernel:

o include/linux/radix-tree.h
o lib/radix-tree.c

Lets talk about what a radix tree is. Radix tree is a compressed trie where
a trie is a data structure which implements an interface of an associative array
and allows to store values as key-value. The keys are usually strings, but any
data type can be used. A trie is different from an n-tree because of its nodes.
Nodes of a trie do not store keys; instead, a node of a trie stores single character
labels. The key which is related to a given node is derived by traversing from
the root of the tree to this node. For example:
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So in this example, we can see the trie with keys, go and cat. The compressed
trie or radix tree differs from trie in that all intermediates nodes which have
only one child are removed.

Radix tree in linux kernel is the data structure which maps values to integer keys.
It is represented by the following structures from the file include/linux/radix-
tree.h:

struct radix_tree_root {

unsigned int height;
gfp_t gfp_mask;
struct radix_tree_node __rcu *rnode;

3
This structure presents the root of a radix tree and contains three fields:

e height - height of the tree;
e gfp_mask - tells how memory allocations will be performed;
e rnode - pointer to the child node.

The first field we will discuss is gfp_mask:

Low-level kernel memory allocation functions take a set of flags as - gfp_mask,
which describes how that allocation is to be performed. These GFP_ flags which
control the allocation process can have following values: (GF_NOIO flag) means
sleep and wait for memory, (__GFP_HIGHMEM flag) means high memory can be
used, (GFP_ATOMIC flag) means the allocation process has high-priority and can’t
sleep etc.

e GFP_NOIO - can sleep and wait for memory;
e __GFP_HIGHMEM - high memory can be used;
e GFP_ATOMIC - allocation process is high-priority and can’t sleep;

etc.

The next field is rnode:
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struct radix_tree_node {

unsigned int path;
unsigned int count;
union {

struct {

struct radix_tree_node *parent;
void #*private_data;
};
struct rcu_head rcu_head;
};
/* For tree user */
struct list_head private_list;
void __rcu *slots [RADIX_TREE_MAP_SIZE];
unsigned long  tags[RADIX_TREE_MAX_TAGS] [RADIX_TREE_TAG_LONGS];
};

This structure contains information about the offset in a parent and height from
the bottom, count of the child nodes and fields for accessing and freeing a node.
This fields are described below:

e path - offset in parent & height from the bottom;
e count - count of the child nodes;

e parent - pointer to the parent node;

e private_data - used by the user of a tree;

e rcu_head - used for freeing a node;

e private_list - used by the user of a tree;

The two last fields of the radix_tree_node - tags and slots are important
and interesting. Every node can contains a set of slots which are store pointers
to the data. Empty slots in the linux kernel radix tree implementation store
NULL. Radix trees in the linux kernel also supports tags which are associated
with the tags fields in the radix_tree_node structure. Tags allow individual
bits to be set on records which are stored in the radix tree.

Now that we know about radix tree structure, it is time to look on its API.

Linux kernel radix tree API

We start from the data structure initialization. There are two ways to initialize
a new radix tree. The first is to use RADIX_TREE macro:

RADIX_TREE(name, gfp_mask);

As you can see we pass the name parameter, so with the RADIX_TREE macro we
can define and initialize radix tree with the given name. Implementation of the
RADIX_TREE is easy:



#define RADIX TREE(name, mask) \
struct radix_tree_root name = RADIX_TREE_INIT (mask)

#define RADIX_TREE_INIT(mask) {
.height = 0,
.gfp_mask = (mask),
.rnode = NULL,

~ s

}

At the beginning of the RADIX_TREE macro we define instance of the
radix_tree_root structure with the given name and call RADIX_TREE_INIT
macro with the given mask. The RADIX_TREE_INIT macro just initializes
radix_tree_root structure with the default values and the given mask.

The second way is to define radix_tree_root structure by hand and pass it
with mask to the INIT_RADIX_TREE macro:

struct radix_tree_root my_radix_tree;
INIT_RADIX_TREE(my_tree, gfp_mask_for_my_radix_tree);

where:

#define INIT RADIX TREE(root, mask) \

do { \
(root)->height = 0; \
(root)->gfp_mask = (mask); \
(root)->rnode = NULL; \

} while (0)

makes the same initialization with default values as it does RADIX_TREE_INIT
mMacro.

The next are two functions for inserting and deleting records to/from a radix
tree:

e radix_tree_insert;
e radix_tree_delete;

The first radix_tree_insert function takes three parameters:

e root of a radix tree;
e index key;
e data to insert;

The radix_tree_delete function takes the same set of parameters as the
radix_tree_insert, but without data.

The search in a radix tree implemented in two ways:

e radix_tree_lookup;
e radix_tree_gang_lookup;
e radix_tree_lookup_slot.



The first radix_tree_lookup function takes two parameters:

e root of a radix tree;
o index key;

This function tries to find the given key in the tree and return the record
associated with this key. The second radix_tree_gang_lookup function have
the following signature

unsigned int radix_tree_gang_lookup(struct radix_tree_root *root,
void **results,
unsigned long first_index,
unsigned int max_items);

and returns number of records, sorted by the keys, starting from the first index.
Number of the returned records will not be greater than max_items value.

And the last radix_tree_lookup_slot function will return the slot which will
contain the data.

Links

« Radix tree
o Trie

Data Structures in the Linux Kernel

Bit arrays and bit operations in the Linux kernel

Besides different linked and tree based data structures, the Linux kernel provides
API for bit arrays or bitmap. Bit arrays are heavily used in the Linux kernel and
following source code files contain common API for work with such structures:

o lib/bitmap.c
o include/linux/bitmap.h

Besides these two files, there is also architecture-specific header file which
provides optimized bit operations for certain architecture. We consider x86_ 64
architecture, so in our case it will be:

o arch/x86/include/asm/bitops.h

header file. As I just wrote above, the bitmap is heavily used in the Linux
kernel. For example a bit array is used to store set of online/offline processors
for systems which support hot-plug cpu (more about this you can read in the
cpumasks part), a bit array stores set of allocated irgs during initialization of
the Linux kernel and etc.
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So, the main goal of this part is to see how bit arrays are implemented in the
Linux kernel. Let’s start.

Declaration of bit array

Before we will look on API for bitmaps manipulation, we must know how to
declare it in the Linux kernel. There are two common method to declare own
bit array. The first simple way to declare a bit array is to array of unsigned
long. For example:

unsigned long my_bitmap[8]

The second way is to use the DECLARE_BITMAP macro which is defined in the
include/linux/types.h header file:

#define DECLARE_BITMAP (name,bits) \
unsigned long name[BITS_TO_LONGS(bits)]

We can see that DECLARE_BITMAP macro takes two parameters:

e name - name of bitmap;
e bits - amount of bits in bitmap;

and just expands to the definition of unsigned long array with BITS_TO_LONGS (bits)
elements, where the BITS_TO_LONGS macro converts a given number of bits to
number of longs or in other words it calculates how many 8 byte elements in
bits:

#define BITS_PER_BYTE 8
#define DIV_ROUND UP(n,d) (((n) + (d) - 1) / (d))
#define BITS_TO_LONGS(nr) DIV_ROUND_UP(nr, BITS_PER_BYTE * sizeof (long))

So, for example DECLARE_BITMAP (my_bitmap, 64) will produce:

>>> (((84) + (84) - 1) / (64))
1

and:
unsigned long my_bitmap[1];

After we are able to declare a bit array, we can start to use it.

Architecture-specific bit operations

We already saw above a couple of source code and header files which provide
API for manipulation of bit arrays. The most important and widely used API
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of bit arrays is architecture-specific and located as we already know in the
arch/x86/include/asm/bitops.h header file.

First of all let’s look at the two most important functions:

e set_bit;
e clear_bit.

I think that there is no need to explain what these function do. This is already
must be clear from their name. Let’s look on their implementation. If you will
look into the arch/x86/include/asm/bitops.h header file, you will note that each
of these functions represented by two variants: atomic and not. Before we will
start to dive into implementations of these functions, first of all we must to know
a little about atomic operations.

In simple words atomic operations guarantees that two or more operations will
not be performed on the same data concurrently. The x86 architecture provides a
set of atomic instructions, for example xchg instruction, cmpxchg instruction and
etc. Besides atomic instructions, some of non-atomic instructions can be made
atomic with the help of the lock instruction. It is enough to know about atomic
operations for now, so we can begin to consider implementation of set_bit and
clear_bit functions.

First of all, let’s start to consider non-atomic variants of this function.
Names of non-atomic set_bit and clear_bit starts from double un-
derscore. As we already know, all of these functions are defined in the
arch/x86/include/asm/bitops.h header file and the first function is __set_bit:

static inline void __set_bit(long nr, volatile unsigned long *addr)
{

asm volatile("bts %1,%0" : ADDR : "Ir" (nr) : "memory");
3

As we can see it takes two arguments:

e nr - number of bit in a bit array.
e addr - address of a bit array where we need to set bit.

Note that the addr parameter is defined with volatile keyword which tells to
compiler that value maybe changed by the given address. The implementation
of the __set_bit is pretty easy. As we can see, it just contains one line of inline
assembler code. In our case we are using the bts instruction which selects a
bit which is specified with the first operand (nr in our case) from the bit array,
stores the value of the selected bit in the CF flags register and set this bit.

Note that we can see usage of the nr, but there is addr here. You already might
guess that the secret is in ADDR. The ADDR is the macro which is defined in the
same header code file and expands to the string which contains value of the
given address and +m constraint:
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#define ADDR BITOP_ADDR(addr)
#define BITOP_ADDR(x) "+m" (*(volatile long *) (x))

Besides the +m, we can see other constraints in the __set_bit function. Let’s
look on they and try to understand what do they mean:

e +m - represents memory operand where + tells that the given operand will
be input and output operand;

e I - represents integer constant;

e r - represents register operand

Besides these constraint, we also can see - the memory keyword which tells
compiler that this code will change value in memory. That’s all. Now let’s look
at the same function but at atomic variant. It looks more complex that its
non-atomic variant:

static __always_inline void
set_bit(long nr, volatile unsigned long *addr)

{
if (IS_IMMEDIATE(nr)) {
asm volatile(LOCK_PREFIX "orb %1,%0"
: CONST_MASK_ADDR(nr, addr)
"ig" ((u8)CONST_MASK(nr))
"memory") ;
} else {
asm volatile(LOCK_PREFIX "bts %1,%0"
: BITOP_ADDR(addr) : "Ir" (ar) : "memory");
}
}

First of all note that this function takes the same set of parameters that
__set_bit, but additionally marked with the __always_inline attribute. The
__always_inline is macro which defined in the include/linux/compiler-gcc.h
and just expands to the always_inline attribute:

#define __always_inline inline __attribute__((always_inline))

which means that this function will be always inlined to reduce size of the
Linux kernel image. Now let’s try to understand implementation of the set_bit
function. First of all we check a given number of bit at the beginning of the
set_bit function. The IS_IMMEDIATE macro defined in the same header file and
expands to the call of the builtin gce function:

#define IS_IMMEDIATE (nr) (__builtin_constant_p(nr))

The __builtin_constant_p builtin function returns 1 if the given parameter
is known to be constant at compile-time and returns O in other case. We no
need to use slow bts instruction to set bit if the given number of bit is known
in compile time constant. We can just apply bitwise or for byte from the give
address which contains given bit and masked number of bits where high bit is 1
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and other is zero. In other case if the given number of bit is not known constant
at compile-time, we do the same as we did in the __set_bit function. The
CONST_MASK_ADDR macro:

#define CONST_MASK_ADDR(nr, addr) BITOP_ADDR((void *) (addr) + ((nr)>>3))

expands to the give address with offset to the byte which contains a given bit.
For example we have address 0x1000 and the number of bit is 0x9. So, as 0x9
is one byte + one bit our address with be addr + 1:

>>> hex(0x1000 + (0x9 >> 3))
"0x1001"'

The CONST_MASK macro represents our given number of bit as byte where high
bit is 1 and other bits are 0:

#define CONST_MASK(nr) (1 << ((ar) & 7))

>>> bin(1l << (0x9 & 7))
"0b10'

In the end we just apply bitwise or for these values. So, for example if our
address will be 0x4097 and we need to set 0x9 bit:

>>> bin(0x4097)

'0b100000010010111"

>>> bin((0x4097 >> 0x9) | (1 << (0x9 & 7)))
"0b100010"

the ninth bit will be set.

Note that all of these operations are marked with LOCK_PREFIX which is expands
to the lock instruction which guarantees atomicity of this operation.

As we already know, besides the set_bit and __set_bit operations, the Linux
kernel provides two inverse functions to clear bit in atomic and non-atomic
context. They are clear_bit and __clear_bit. Both of these functions are
defined in the same header file and takes the same set of arguments. But not
only arguments are similar. Generally these functions are very similar on the
set_bit and __set_bit. Let’s look on the implementation of the non-atomic
__clear_bit function:

static inline void __clear_bit(long nr, volatile unsigned long *addr)
{

asm volatile("btr %1,%0" : ADDR : "Ir" (mr));
X

Yes. As we see, it takes the same set of arguments and contains very similar
block of inline assembler. It just uses the btr instruction instead of bts. As
we can understand form the function’s name, it clears a given bit by the given
address. The btr instruction acts like bts. This instruction also selects a given

14


http://x86.renejeschke.de/html/file_module_x86_id_159.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/include/asm/bitops.h
http://x86.renejeschke.de/html/file_module_x86_id_24.html

bit which is specified in the first operand, stores its value in the CF flag register
and clears this bit in the given bit array which is specified with second operand.

The atomic variant of the __clear_bit is clear_bit:

static __always_inline void
clear_bit(long nr, volatile unsigned long *addr)

{
if (IS_IMMEDIATE(nr)) {
asm volatile(LOCK_PREFIX "andb %1,%0"
: CONST_MASK_ADDR(nr, addr)
"ig" ((u8)~CONST_MASK(nr)));
} else {
asm volatile(LOCK_PREFIX "btr %1,%0"
: BITOP_ADDR(addr)
"Ir" (nr));
¥
}

and as we can see it is very similar on set_bit and just contains two differences.
The first difference it uses btr instruction to clear bit when the set_bit uses
bts instruction to set bit. The second difference it uses negated mask and and
instruction to clear bit in the given byte when the set_bit uses or instruction.

That’s all. Now we can set and clear bit in any bit array and and we can go to
other operations on bitmasks.

Most widely used operations on a bit arrays are set and clear bit in a bit
array in the Linux kernel. But besides this operations it is useful to do ad-
ditional operations on a bit array. Yet another widely used operation in the
Linux kernel - is to know is a given bit set or not in a bit array. We can
achieve this with the help of the test_bit macro. This macro is defined in
the arch/x86/include/asm/bitops.h header file and expands to the call of the
constant_test_bit or variable_test_bit depends on bit number:

#define test_bit(nr, addr) \
(__builtin_constant_p((nr)) \
? constant_test_bit((nr), (addr)) \

: variable_test_bit((nr), (addr)))

So, if the nr is known in compile time constant, the test_bit will be expanded
to the call of the constant_test_bit function or variable_test_bit in other
case. Now let’s look at implementations of these functions. Let’s start from the
variable_test_bit:

static inline int variable_test_bit(long nr, volatile const unsigned long *addr)
{
int oldbit;

asm volatile("bt %2,%1\n\t"
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"sbb %0,%0"
"=r" (oldbit)
"m" (*(unsigned long *)addr), "Ir" (ar));

return oldbit;

}

The variable_test_bit function takes similar set of arguments as set_bit and
other function take. We also may see inline assembly code here which executes
bt and sbb instruction. The bt or bit test instruction selects a given bit which
is specified with first operand from the bit array which is specified with the
second operand and stores its value in the CF bit of flags register. The second
sbb instruction subtracts first operand from second and subtracts value of the
CF. So, here write a value of a given bit number from a given bit array to the CF
bit of flags register and execute sbb instruction which calculates: 00000000 -
CF and writes the result to the oldbit.

The constant_test_bit function does the same as we saw in the set_bit:

static __always_inline int constant_test_bit(long nr, const volatile unsigned long *addr)
{
return ((1UL << (nr & (BITS_PER_LONG-1))) &
(addr [nr >> _BITOPS_LONG_SHIFT])) != 0;
}

It generates a byte where high bit is 1 and other bits are 0 (as we saw in
CONST_MASK) and applies bitwise and to the byte which contains a given bit
number.

The next widely used bit array related operation is to change bit in a bit array.
The Linux kernel provides two helper for this:

e __change_bit;
e change_bit.

As you already can guess, these two variants are atomic and non-atomic as for
example set_bit and __set_bit. For the start, let’s look at the implementation
of the __change_bit function:

static inline void __change_bit(long nr, volatile unsigned long *addr)
{

asm volatile("btc %1,%0" : ADDR : "Ir" (ar));
b

Pretty easy, is not it? The implementation of the __change_bit is the same as
__set_bit, but instead of bts instruction, we are using btc. This instruction
selects a given bit from a given bit array, stores its value in the CF and changes
its value by the applying of complement operation. So, a bit with value 1 will
be 0 and vice versa:
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>>> int(not 1)
0
>>> int(not 0)
1

The atomic version of the __change_bit is the change_bit function:

static inline void change_bit(long nr, volatile unsigned long *addr)
{
if (IS_IMMEDIATE(nr)) {
asm volatile(LOCK_PREFIX "xorb %1,%0"
: CONST_MASK_ADDR(nr, addr)
"ig" ((u8)CONST_MASK(nr)));
} else {
asm volatile(LOCK_PREFIX "btc %1,%0"
: BITOP_ADDR(addr)
"Ir" (nr));

3

It is similar on set_bit function, but also has two differences. The first difference
is xor operation instead of or and the second is btc instead of bts.

For this moment we know the most important architecture-specific operations
with bit arrays. Time to look at generic bitmap API.

Common bit operations

Besides the architecture-specific API from the arch/x86/include/asm/bitops.h
header file, the Linux kernel provides common API for manipulation of bit
arrays. As we know from the beginning of this part, we can find it in the
include/linux/bitmap.h header file and additionally in the * lib/bitmap.c
source code file. But before these source code files let’s look into the
include/linux/bitops.h header file which provides a set of useful macro. Let’s
look on some of they.

First of all let’s look at following four macros:

e for_each_set_bit

e for_each_set_bit_from
e for_each_clear_bit

e for_each_clear_bit_from

All of these macros provide iterator over certain set of bits in a bit array. The
first macro iterates over bits which are set, the second does the same, but starts
from a certain bits. The last two macros do the same, but iterates over clear
bits. Let’s look on implementation of the for_each_set_bit macro:
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#define for_each_set_bit(bit, addr, size) \
for ((bit) = find_first_bit((addr), (size)); \
(bit) < (size); \
(bit) = find_next_bit((addr), (size), (bit) + 1))

As we may see it takes three arguments and expands to the loop from first set
bit which is returned as result of the find_first_bit function and to the last
bit number while it is less than given size.

Besides these four macros, the arch/x86/include/asm/bitops.h provides API for
rotation of 64-bit or 32-bit values and etc.

The next header file which provides API for manipulation with a bit arrays. For
example it provides two functions:

e bitmap_zero;
e bitmap_fill.

To clear a bit array and fill it with 1. Let’s look on the implementation of the
bitmap_zero function:

static inline void bitmap_zero(unsigned long *dst, unsigned int nbits)
{
if (small_const_nbits(nbits))
*dst = OUL;
else {
unsigned int len = BITS_TO_LONGS(nbits) * sizeof (unsigned long);
memset(dst, 0, len);

}

First of all we can see the check for nbits. The small_const_nbits is macro
which defined in the same header file and looks:

#define small_const_nbits(nbits) \
(__builtin_constant_p(nbits) && (nbits) <= BITS_PER_LONG)

As we may see it checks that nbits is known constant in compile time and nbits
value does not overflow BITS_PER_LONG or 64. If bits number does not overflow
amount of bits in a long value we can just set to zero. In other case we need to
calculate how many long values do we need to fill our bit array and fill it with
memset.

The implementation of the bitmap_£ill function is similar on implementation
of the biramp_zero function, except we fill a given bit array with Oxff values
or Ob11111111:

static inline void bitmap_fill(unsigned long *dst, unsigned int nbits)

{
unsigned int nlongs = BITS_TO_LONGS(nbits);
if (!small_const_nbits(nbits)) {
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unsigned int len = (nlongs - 1) * sizeof (unsigned long);
memset (dst, Oxff, len);
}
dst[nlongs - 1] = BITMAP_LAST_WORD_MASK(nbits);
}

Besides the bitmap_fill and bitmap_zero functions, the include/linux/bitmap.h
header file provides bitmap_copy which is similar on the bitmap_zero, but
just uses memcpy instead of memset. Also it provides bitwise operations
for bit array like bitmap_and, bitmap_or, bitamp_xor and etc. We will not
consider implementation of these functions because it is easy to understand
implementations of these functions if you understood all from this part. Anyway
if you are interested how did these function implemented, you may open
include/linux/bitmap.h header file and start to research.

That’s all.

Links

e bitmap

e linked data structures
e tree data structures
e hot-plug

e cpumasks

o IRQs

o API

e atomic operations
e xchg instruction

e cmpxchg instruction
e lock instruction

¢ bts instruction

e btr instruction

e bt instruction

e sbb instruction

e btc instruction

e man memcpy

e man memset

L] CF

o inline assembler

e gcc
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Kernel initialization process

You will find here a couple of posts which describe the full cycle of kernel
initialization from its first step after the kernel has been decompressed to the
start of the first process run by the kernel itself.

Note That there will not be a description of the all kernel initialization steps.
Here will be only generic kernel part, without interrupts handling, ACPI, and
many other parts. All parts which I have missed, will be described in other
chapters.

o First steps after kernel decompression - describes first steps in the kernel.

e Early interrupt and exception handling - describes early interrupts initial-
ization and early page fault handler.

o Last preparations before the kernel entry point - describes the last prepa-
rations before the call of the start_kernel.

e Kernel entry point - describes first steps in the kernel generic code.

¢ Continue of architecture-specific initializations - describes architecture-
specific initialization.

o Architecture-specific initializations, again... - describes continue of the
architecture-specific initialization process.
e The End of the architecture-specific initializations, almost... - describes

the end of the setup_arch related stuff.

e Scheduler initialization - describes preparation before scheduler initializa-
tion and initialization of it.

e RCU initialization - describes the initialization of the RCU.

e End of the initialization - the last part about linux kernel initialization.

Kernel initialization. Part 10.

End of the linux kernel initialization process

This is tenth part of the chapter about linux kernel initialization process and in
the previous part we saw the initialization of the RCU and stopped on the call
of the acpi_early_init function. This part will be the last part of the Kernel
initialization process chapter, so let’s finish it.

After the call of the acpi_early_init function from the init/main.c, we can see
the following code:

#ifdef CONFIG_X86_ESPFIX64
init_espfix_bsp();
#endif
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Here we can see the call of the init_espfix_bsp function which depends on the
CONFIG_X86_ESPFIX64 kernel configuration option. As we can understand from
the function name, it does something with the stack. This function is defined
in the arch/x86/kernel/espfix_64.c and prevents leaking of 31:16 bits of the
esp register during returning to 16-bit stack. First of all we install espfix page
upper directory into the kernel page directory in the init_espfix_bs:

pgd_p = &init_leveld_pgt[pgd_index (ESPFIX_BASE_ADDR)];
pgd_populate(&init_mm, pgd_p, (pud_t *)espfix_pud_page);

Where ESPFIX_BASE_ADDR is:

#define PGDIR_SHIFT 39
#define ESPFIX_PGD_ENTRY _AC(-2, UL)
#define ESPFIX_BASE_ADDR (ESPFIX_PGD_ENTRY << PGDIR_SHIFT)

Also we can find it in the Documentation/x86/x86_ 64 /mm:

. unused hole ...
ff££££0000000000 - fEffff7ffEfFfEfFff (=39 bits) %esp fixup stacks
. unused hole ...

After we've filled page global directory with the espfix pud, the next step
is call of the init_espfix_random and init_espfix_ap functions. The first
function returns random locations for the espfix page and the second enables
the espfix for the current CPU. After the init_espfix_bsp finished the work,
we can see the call of the thread_info_cache_init function which defined in
the kernel/fork.c and allocates cache for the thread_info if THREAD_SIZE is less
than PAGE_SIZE:

# if THREAD_SIZE >= PAGE_SIZE

void thread_info_cache_init(void)

{
thread_info_cache = kmem_cache_create("thread info", THREAD_SIZE,
THREAD_SIZE, 0, NULL);
BUG_ON(thread_info_cache == NULL);
}
#endif

As we already know the PAGE_SIZE is (_AC(1,UL) << PAGE_SHIFT) or 4096
bytes and THREAD_SIZE is (PAGE_SIZE << THREAD_SIZE_ORDER) or 16384 bytes
for the x86_64. The next function after the thread_info_cache_init is the
cred_init from the kernel/cred.c. This function just allocates cache for the
credentials (like uid, gid, etc.):
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void __init cred_init(void)
{
cred_jar = kmem_cache_create('"cred_jar", sizeof(struct cred),
0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
}

more about credentials you can read in the Documentation /security /credentials.txt.
Next step is the fork_init function from the kernel/fork.c. The fork_init
function allocates cache for the task_struct. Let’s look on the implementation
of the fork_init. First of all we can see definitions of the ARCH_MIN_TASKALIGN
macro and creation of a slab where task structs will be allocated:

#ifndef CONFIG_ARCH_TASK STRUCT_ALLOCATOR
#ifndef ARCH_MIN_TASKALIGN
#define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
#endif
task_struct_cachep =
kmem_cache_create("task_struct", sizeof (struct task_struct),
ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
#endif

As we can see this code depends on the CONFIG_ARCH_TASK_STRUCT_ACLLOCATOR
kernel configuration option. This configuration option shows the presence
of the alloc_task_struct for the given architecture. As x86_64 has no
alloc_task_struct function, this code will not work and even will not be
compiled on the x86_64.

Allocating cache for init task

After this we can see the call of the arch_task_cache_init function in the
fork_init:

void arch_task_cache_init(void)

{
task_xstate_cachep =
kmem_cache_create("task_xstate", xstate_size,
__alignof__(union thread_xstate),
SLAB_PANIC | SLAB_NOTRACK, NULL);
setup_xstate_comp() ;
}

The arch_task_cache_init does initialization of the architecture-specific caches.
In our case it is x86_64, so as we can see, the arch_task_cache_init allocates
cache for the task_xstate which represents FPU state and sets up offsets and
sizes of all extended states in xsave area with the call of the setup_xstate_comp
function. After the arch_task_cache_init we calculate default maximum
number of threads with the:
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set_max_threads (MAX_THREADS) ;
where default maximum number of threads is:

#define FUTEX_TID_MASK Ox3fffffff
#define MAX_THREADS FUTEX_TID_MASK

In the end of the fork_init function we initialize signal handler:

init_task.signal->rlim[RLIMIT_NPROC] .rlim_cur = max_threads/2;

init_task.signal->rlim[RLIMIT_NPROC] .rlim_max = max_threads/2;

init_task.signal->rlim[RLIMIT_SIGPENDING] =
init_task.signal->rlim[RLIMIT_NPROC];

As we know the init_task is an instance of the task_struct structure, so it
contains signal field which represents signal handler. It has following type
struct signal_struct. On the first two lines we can see setting of the current
and maximum limit of the resource limits. Every process has an associated
set of resource limits. These limits specify amount of resources which current
process can use. Here rlim is resource control limit and presented by the:

struct rlimit {
__kernel _ulong_t rlim_cur;
__kernel_ulong_t rlim_max;

};

structure from the include/uapi/linux/resource.h. In our case the resource is the
RLIMIT_NPROC which is the maximum number of processes that user can own
and RLIMIT_SIGPENDING - the maximum number of pending signals. We can
see it in the:

cat /proc/self/limits

Limit Soft Limit Hard Limit
Max processes 63815 63815
Max pending signals 63815 63815

Initialization of the caches

The next function after the fork_init is the proc_caches_init from the
kernel/fork.c. This function allocates caches for the memory descriptors (or
mm_struct structure). At the beginning of the proc_caches_init we can see
allocation of the different SLAB caches with the call of the kmem_cache_create:

Units

processes
signals
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e sighand_cachep - manage information about installed signal handlers;
e signal_cachep - manage information about process signal descriptor;
e files_cachep - manage information about opened files;

e fs_cachep - manage filesystem information.

After this we allocate SLAB cache for the mm_struct structures:

mm_cachep = kmem_cache_create("mm_struct",
sizeof (struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);

After this we allocate SLAB cache for the important vm_area_struct which used
by the kernel to manage virtual memory space:

vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);

Note, that we use KMEM_CACHE macro here instead of the kmem_cache_create.
This macro is defined in the include/linux/slab.h and just expands to the
kmem_cache_create call:

#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
sizeof (struct struct), alignof__(struct __struct),\

(__flags), NULL)

The KMEM_CACHE has one difference from kmem_cache_create. Take a look on
__alignof__ operator. The KMEM_CACHE macro aligns SLAB to the size of the
given structure, but kmem_cache_create uses given value to align space. After
this we can see the call of the mmap_init and nsproxy_cache_init functions.
The first function initializes virtual memory area SLAB and the second function
initializes SLAB for namespaces.

The next function after the proc_caches_init is buffer_init. This func-
tion is defined in the fs/buffer.c source code file and allocate cache for the
buffer_head. The buffer_head is a special structure which defined in the
include/linux/buffer head.h and used for managing buffers. In the start of the
buffer_init function we allocate cache for the struct buffer_head structures
with the call of the kmem_cache_create function as we did in the previous
functions. And calculate the maximum size of the buffers in memory with:

nrpages = (nr_free_buffer_pages() * 10) / 100;
max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));

which will be equal to the 10% of the ZONE_NORMAL (all RAM from the 4GB on the
x86_64). The next function after the buffer_init is - vfs_caches_init. This
function allocates SLAB caches and hashtable for different VFS caches. We already
saw the vfs_caches_init_early function in the eighth part of the linux kernel
initialization process which initialized caches for dcache (or directory-cache)
and inode cache. The vfs_caches_init function makes post-early initialization
of the dcache and inode caches, private data cache, hash tables for the mount
points, etc. More details about VFS will be described in the separate part.
After this we can see signals_init function. This function is defined in the


https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/slab.h
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/fs/buffer.c
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/buffer_head.h
http://en.wikipedia.org/wiki/Virtual_file_system
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-8.html
http://en.wikipedia.org/wiki/Inode
http://en.wikipedia.org/wiki/Virtual_file_system

kernel/signal.c and allocates a cache for the sigqueue structures which represents
queue of the real time signals. The next function is page_writeback_init. This
function initializes the ratio for the dirty pages. Every low-level page entry
contains the dirty bit which indicates whether a page has been written to after
been loaded into memory.

Creation of the root for the procfs

After all of this preparations we need to create the root for the proc filesystem. We
will do it with the call of the proc_root_init function from the fs/proc/root.c.
At the start of the proc_root_init function we allocate the cache for the inodes
and register a new filesystem in the system with the:

err = register_filesystem(&proc_fs_type);
if (err)
return;

As I wrote above we will not dive into details about VFS and different filesys-
tems in this chapter, but will see it in the chapter about the VFS. After we've
registered a new filesystem in our system, we call the proc_self_init function
from the fs/proc/self.c and this function allocates inode number for the self
(/proc/self directory refers to the process accessing the /proc filesystem). The
next step after the proc_self_init is proc_setup_thread_self which setups
the /proc/thread-self directory which contains information about current
thread. After this we create /proc/self/mounts symlink which will contains
mount points with the call of the

proc_symlink("mounts", NULL, "self/mounts");
and a couple of directories depends on the different configuration options:

#ifdef CONFIG_SYSVIPC
proc_mkdir("sysvipc", NULL);
#endif
proc_mkdir("fs", NULL);
proc_mkdir("driver", NULL);
proc_mkdir("fs/nfsd", NULL);
#if defined (CONFIG_SUN_OPENPROMFS) || defined(CONFIG_SUN_OPENPROMFS_MODULE)
proc_mkdir ("openprom", NULL);
#endif
proc_mkdir("bus", NULL);

if (!proc_mkdir("tty", NULL))
return;
proc_mkdir("tty/ldisc", NULL);
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In the end of the proc_root_init we call the proc_sys_init function which
creates /proc/sys directory and initializes the Sysctl.

It is the end of start_kernel function. I did not describe all functions which
are called in the start_kernel. I skipped them, because they are not important
for the generic kernel initialization stuff and depend on only different kernel
configurations. They are taskstats_init_early which exports per-task statis-
tic to the user-space, delayacct_init - initializes per-task delay accounting,
key_init and security_init initialize different security stuff, check_bugs - fix
some architecture-dependent bugs, ftrace_init function executes initialization
of the ftrace, cgroup_init makes initialization of the rest of the cgroup sub-
system,etc. Many of these parts and subsystems will be described in the other
chapters.

That’s all. Finally we have passed through the long-long start_kernel function.
But it is not the end of the linux kernel initialization process. We haven’t run
the first process yet. In the end of the start_kernel we can see the last call of
the - rest_init function. Let’s go ahead.

First steps after the start_ kernel

The rest_init function is defined in the same source code file as start_kernel
function, and this file is init/main.c. In the beginning of the rest_init we can
see call of the two following functions:

rcu_scheduler_starting();
smpboot_thread_init();

The first rcu_scheduler_starting makes RCU scheduler active and the second
smpboot_thread_init registers the smpboot_thread_notifier CPU notifier
(more about it you can read in the CPU hotplug documentation. After this we
can see the following calls:

kernel_thread(kernel_init, NULL, CLONE_FS);
pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);

Here the kernel_thread function (defined in the kernel/fork.c) creates new
kernel thread.As we can see the kernel_thread function takes three arguments:

e Function which will be executed in a new thread;
o Parameter for the kernel_init function;
o Flags.

We will not dive into details about kernel_thread implementation (we will see
it in the chapter which describe scheduler, just need to say that kernel_thread
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invokes clone). Now we only need to know that we create new kernel thread
with kernel_thread function, parent and child of the thread will use shared
information about filesystem and it will start to execute kernel_init function.
A kernel thread differs from a user thread that it runs in kernel mode. So with
these two kernel_thread calls we create two new kernel threads with the PID
= 1 for init process and PID = 2 for kthreadd. We already know what is init
process. Let’s look on the kthreadd. It is a special kernel thread which manages
and helps different parts of the kernel to create another kernel thread. We can
see it in the output of the ps util:

$ ps —ef | grep kthreadd
root 2 0 0 Janl1l ? 00:00:00 [kthreadd]

Let’s postpone kernel_init and kthreadd for now and go ahead in the
rest_init. In the next step after we have created two new kernel threads we
can see the following code:

rcu_read_lock();
kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns);
rcu_read_unlock();

The first rcu_read_lock function marks the beginning of an RCU read-side
critical section and the rcu_read_unlock marks the end of an RCU read-side
critical section. We call these functions because we need to protect the
find_task_by_pid_ns. The find_task_by_pid_ns returns pointer to the
task_struct by the given pid. So, here we are getting the pointer to
the task_struct for PID = 2 (we got it after kthreadd creation with the
kernel_thread). In the next step we call complete function

complete (&kthreadd_done) ;

and pass address of the kthreadd_done. The kthreadd_done defined as
static __initdata DECLARE_COMPLETION(kthreadd_done) ;

where DECLARE_COMPLETION macro defined as:

#define DECLARE_COMPLETION (work) \
struct completion work = COMPLETION_INITIALIZER(work)

and expands to the definition of the completion structure. This structure is
defined in the include/linux/completion.h and presents completions concept.
Completions is a code synchronization mechanism which provides race-free
solution for the threads that must wait for some process to have reached a
point or a specific state. Using completions consists of three parts: The first is
definition of the complete structure and we did it with the DECLARE_COMPLETION.
The second is call of the wait_for_completion. After the call of this function,
a thread which called it will not continue to execute and will wait while other
thread did not call complete function. Note that we call wait_for_completion
with the kthreadd_done in the beginning of the kernel_init_freeable:
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wait_for_completion(&kthreadd_done) ;

And the last step is to call complete function as we saw it above. After this the
kernel_init_freeable function will not be executed while kthreadd thread
will not be set. After the kthreadd was set, we can see three following functions
in the rest_init:

init_idle_bootup_task(current) ;
schedule_preempt_disabled();
cpu_startup_entry(CPUHP_ONLINE) ;

The first init_idle_bootup_task function from the kernel/sched/core.c sets
the Scheduling class for the current process (idle class in our case):

void init_idle_bootup_task(struct task_struct *idle)
{
idle->sched_class = &idle_sched_class;

}

where idle class is a low task priority and tasks can be run only when the
processor doesn’t have anything to run besides this tasks. The second function
schedule_preempt_disabled disables preempt in idle tasks. And the third
function cpu_startup_entry is defined in the kernel/sched/idle.c and calls
cpu_idle_loop from the kernel/sched/idle.c. The cpu_idle_loop function
works as process with PID = 0 and works in the background. Main purpose
of the cpu_idle_loop is to consume the idle CPU cycles. When there is no
process to run, this process starts to work. We have one process with idle
scheduling class (we just set the current task to the idle with the call of the
init_idle_bootup_task function), so the idle thread does not do useful work
but just checks if there is an active task to switch to:

static void cpu_idle_loop(void)

{

while (1) {
while (!need_resched()) {

3

More about it will be in the chapter about scheduler. So for this moment
the start_kernel calls the rest_init function which spawns an init
(kernel_init function) process and become idle process itself. Now is time to
look on the kernel_init. Execution of the kernel_init function starts from
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the call of the kernel_init_freeable function. The kernel_init_freeable
function first of all waits for the completion of the kthreadd setup. I already
wrote about it above:

wait_for_completion(&kthreadd_done) ;

After this we set gfp_allowed_mask to __GFP_BITS_MASK which means that
system is already running, set allowed cpus/mems to all CPUs and NUMA nodes
with the set_mems_allowed function, allow init process to run on any CPU with
the set_cpus_allowed_ptr, set pid for the cad or Ctrl-Alt-Delete, do prepa-
ration for booting of the other CPUs with the call of the smp_prepare_cpus, call
early initcalls with the do_pre_smp_initcalls, initialize SMP with the smp_init
and initialize lockup_ detector with the call of the lockup_detector_init and
initialize scheduler with the sched_init_smp.

After this we can see the call of the following functions - do_basic_setup. Before
we will call the do_basic_setup function, our kernel already initialized for this
moment. As comment says:

Now we can finally start doing some real work..

The do_basic_setup will reinitialize cpuset to the active CPUs, initialize the
khelper - which is a kernel thread which used for making calls out to userspace
from within the kernel, initialize tmpfs, initialize drivers subsystem, enable the
user-mode helper workqueue and make post-early call of the initcalls. We
can see opening of the dev/console and dup twice file descriptors from 0 to 2
after the do_basic_setup:

if (sys_open((const char __user *) "/dev/console", O_RDWR, 0) < 0)
pr_err("Warning: unable to open an initial console.\n");

(void) sys_dup(0);
(void) sys_dup(0);

We are using two system calls here sys_open and sys_dup. In the next chapters
we will see explanation and implementation of the different system calls. After
we opened initial console, we check that rdinit= option was passed to the kernel
command line or set default path of the ramdisk:

if (!'ramdisk_execute_command)
ramdisk_execute_command = "/init";

Check user’s permissions for the ramdisk and call the prepare_namespace
function from the init/do_mounts.c which checks and mounts the initrd:

if (sys_access((const char __user *) ramdisk_execute_command, 0) != 0) {

ramdisk _execute_command = NULL;
prepare_namespace() ;
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This is the end of the kernel_init_freeable function and we need return to
the kernel_init. The next step after the kernel_init_freeable finished its
execution is the async_synchronize_full. This function waits until all asyn-
chronous function calls have been done and after it we will call the free_initmem
which will release all memory occupied by the initialization stuff which located
between __init_begin and __init_end. After this we protect .rodata with
the mark_rodata_ro and update state of the system from the SYSTEM_BOOTING
to the

system_state = SYSTEM_RUNNING;
And tries to run the init process:

if (ramdisk_execute_command) {
ret = run_init_process(ramdisk_execute_command) ;
if ('ret)
return 0O;
pr_err("Failed to execute %s (error %d)\n",
ramdisk_execute_command, ret);

3

First of all it checks the ramdisk_execute_command which we set in the
kernel_init_freeable function and it will be equal to the value of
the rdinit= kernel command line parameters or /init by default. The
run_init_process function fills the first element of the argv_init array:

static const char *argv_init[MAX_INIT_ARGS+2] = { "init", NULL, };
which represents arguments of the init program and call do_execve function:

argv_init[0] = init_filename;

return do_execve(getname_kernel(init_filename),
(const char __user *const __user *)argv_init,
(const char __user *const __user *)envp_init);

The do_execve function is defined in the include/linux/sched.h and runs program
with the given file name and arguments. If we did not pass rdinit= option to
the kernel command line, kernel starts to check the execute_command which is
equal to value of the init= kernel command line parameter:

if (execute_command) {
ret = run_init_process(execute_command) ;
if ('ret)
return 0;
panic("Requested init %s failed (error %d).",
execute_command, ret);

}

If we did not pass init= kernel command line parameter either, kernel tries to
run one of the following executable files:
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if (!try_to_run_init_process("/sbin/init") ||
'try_to_run_init_process("/etc/init")
'try_to_run_init_process("/bin/init")
'try_to_run_init_process("/bin/sh"))

return 0O;

Otherwise we finish with panic:

"

panic("No working init found. Try passing init= option to kernel.
"See Linux Documentation/init.txt for guidance.");

That’s all! Linux kernel initialization process is finished!

Conclusion

It is the end of the tenth part about the linux kernel initialization process. It is
not only the tenth part, but also is the last part which describes initialization
of the linux kernel. As I wrote in the first part of this chapter, we will go
through all steps of the kernel initialization and we did it. We started at the first
architecture-independent function - start_kernel and finished with the launch
of the first init process in the our system. I skipped details about different
subsystem of the kernel, for example I almost did not cover scheduler, interrupts,
exception handling, etc. From the next part we will start to dive to the different
kernel subsystems. Hope it will be interesting.

If you have any questions or suggestions write me a comment or ping me at
twitter.

Please note that English is not my first language, And I am really
sorry for any inconvenience. If you find any mistakes please send me
PR to linux-insides.

Links

o SLAB

o Xsave

« FPU

o Documentation/security/credentials.txt
o Documentation/x86/x86_ 64/mm
L] RCU

L] VFS

o inode

e proc

e man proc

e Sysctl

o ftrace
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e cgroup
e CPU hotplug documentation

e completions - wait for completion handling
« NUMA

e cpus/mems

o initcalls

o Tmpfs

e initrd

e panic

e Previous part

Kernel initialization. Part 1.

First steps in the kernel code

The previous post was a last part of the Linux kernel booting process chapter
and now we are starting to dive into initialization process of the Linux kernel.
After the image of the Linux kernel is decompressed and placed in a correct
place in memory, it starts to work. All previous parts describe the work of the
Linux kernel setup code which does preparation before the first bytes of the
Linux kernel code will be executed. From now we are in the kernel and all parts
of this chapter will be devoted to the initialization process of the kernel before it
will launch process with pid 1. There are many things to do before the kernel
will start first init process. Hope we will see all of the preparations before
kernel will start in this big chapter. We will start from the kernel entry point,
which is located in the arch/x86/kernel/head 64.S and will move further and
further. We will see first preparations like early page tables initialization, switch
to a new descriptor in kernel space and many many more, before we will see the
start_kernel function from the init/main.c will be called.

In the last part of the previous chapter we stopped at the jmp instruction from
the arch/x86/boot/compressed/head_64.S assembly source code file:

jmp *Jrax

At this moment the rax register contains address of the Linux kernel entry
point which that was obtained as a result of the call of the decompress_kernel
function from the arch/x86/boot/compressed/misc.c source code file. So, our
last instruction in the kernel setup code is a jump on the kernel entry point. We
already know where is defined the entry point of the linux kernel, so we are able
to start to learn what does the Linux kernel does after the start.
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First steps in the kernel

Okay, we got the address of the decompressed kernel image from the
decompress_kernel function into rax register and just jumped there. As we
already know the entry point of the decompressed kernel image starts in the
arch/x86/kernel /head_ 64.S assembly source code file and at the beginning of it,
we can see following definitions:

.text

__HEAD

.code64

.globl startup_64
startup_64:

We can see definition of the startup_64 routine that is defined in the __HEAD
section, which is just a macro which expands to the definition of executable
.head.text section:

#define __HEAD .section ".head.text","ax"

We can see definition of this section in the arch/x86/kernel/vmlinux.lds.S linker
script:

.text : AT(ADDR(.text) - LOAD_OFFSET) {
_text = .;

} :text = 0x9090

Besides the definition of the .text section, we can understand default virtual
and physical addresses from the linker script. Note that address of the _text is
location counter which is defined as:

. = __START_KERNEL;

for the x86_ 64. The definition of the __START_KERNEL macro is located in the
arch/x86/include/asm/page types.h header file and represented by the sum of
the base virtual address of the kernel mapping and physical start:

#define __START_KERNEL (__START_KERNEL map + __PHYSICAL_START)

#define _ PHYSICAL START ALIGN(CONFIG PHYSICAL_START, CONFIG PHYSICAL ALIGN)
Or in other words:

e Base physical address of the Linux kernel - 0x1000000;
o Base virtual address of the Linux kernel - Oxf£f££f££f££81000000.
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Now we know default physical and virtual addresses of the startup_64 routine,
but to know actual addresses we must to calculate it with the following code:

leaq _text (%rip), '%rbp
subq $_text - __START_KERNEL map, %rbp

Yes, it defined as 0x1000000, but it may be different, for example if KASLR is
enabled. So our current goal is to calculate delta between 0x1000000 and where
we actually loaded. Here we just put the rip-relative address to the rbp
register and then subtract $_text - __START_KERNEL_map from it. We know
that compiled virtual address of the _text is Oxfffffff£f81000000 and the
physical address of it is 0x1000000. The __START_KERNEL_map macro expands
to the Oxfffff£££80000000 address, so at the second line of the assembly code,
we will get following expression:

rbp = 0x1000000 - (Oxfffffff£81000000 - Oxffffffff80000000)

So, after the calculation, the rbp will contain 0 which represents difference
between addresses where we actually loaded and where the code was compiled.
In our case zero means that the Linux kernel was loaded by default address and
the kASLR was disabled.

After we got the address of the startup_64, we need to do a check that this
address is correctly aligned. We will do it with the following code:

testl  $~PMD_PAGE_MASK, %ebp
jnz bad_address

Here we just compare low part of the rbp register with the complemented value
of the PMD_PAGE_MASK. The PMD_PAGE_MASK indicates the mask for Page middle
directory (read paging about it) and defined as:

#define PMD PAGE_MASK (~(PMD_PAGE_SIZE-1))
where PMD_PAGE_SIZE macro defined as:

#define PMD_PAGE_SIZE (_AC(1, UL) << PMD_SHIFT)
#define PMD_SHIFT 21

As we can easily calculate, PMD_PAGE_SIZE is 2 megabytes. Here we use standard
formula for checking alignment and if text address is not aligned for 2 megabytes,
we jump to bad_address label.

After this we check address that it is not too large by the checking of highest 18
bits:

leaq _text (%rip), ‘rax
shrq $MAX_PHYSMEM_BITS, %rax
jnz bad_address

The address must not be greater than 46-bits:
#define MAX_PHYSMEM_BITS 46
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Okay, we did some early checks and now we can move on.

Fix base addresses of page tables

The first step before we start to setup identity paging is to fixup following
addresses:

addq %rbp, early_leveld_pgt + (L4_START_KERNEL*8) (%rip)
addq %rbp, level3_kernel_pgt + (510%8) (%rip)
addq %rbp, level3_kernel_pgt + (511%8) (%rip)
addq %rbp, level2_fixmap_pgt + (506%8) (Yirip)

All of early_leveld_pgt, level3_kernel_pgt and other address may be
wrong if the startup_64 is not equal to default 0x1000000 address. The
rbp register contains the delta address so we add to the certain entries of
the early_level4d_pgt, the level3_kernel_pgt and the level2_fixmap_pgt.
Let’s try to understand what these labels mean. First of all let’s look at their
definition:

NEXT_PAGE(early_level4_pgt)
.fill  511,8,0
.quad level3_kernel_pgt - __START_KERNEL _map + _PAGE_TABLE

NEXT_PAGE(level3_kernel_pgt)
.fill  L3_START_KERNEL,8,0
.quad level2_kernel_pgt - __START_KERNEL_map + _KERNPG_TABLE
.quad level2_fixmap_pgt - __START_KERNEL _map + _PAGE_TABLE

NEXT_PAGE(level2_kernel_pgt)
PMDS (0, __PAGE_KERNEL LARGE_EXEC,
KERNEL_IMAGE_SIZE/PMD_SIZE)

NEXT_PAGE(level2_fixmap_pgt)
.fill 506,8,0
.quad levell _fixmap_pgt - __START_KERNEL_map + _PAGE_TABLE
.fill 5,8,0

NEXT_PAGE(levell_fixmap_pgt)
Lfill 512,8,0

Looks hard, but it isn’t. First of all let’s look at the early_leveld_pgt. It
starts with the (4096 - 8) bytes of zeros, it means that we don’t use the first
511 entries. And after this we can see one level3_kernel_pgt entry. Note
that we subtract __START_KERNEL_map + _PAGE_TABLE from it. As we know
__START_KERNEL_map is a base virtual address of the kernel text, so if we subtract
__START_KERNEL_map, we will get physical address of the level3_kernel_pgt.
Now let’s look at _PAGE_TABLE, it is just page entry access rights:
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#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | \
_PAGE_ACCESSED | _PAGE_DIRTY)

You can read more about it in the paging part.

The 1level3_kernel_pgt - stores two entries which map kernel space. At the start
of it’s definition, we can see that it is filled with zeros L3_START_KERNEL or 510
times. Here the L3_START_KERNEL is the index in the page upper directory which
contains __START_KERNEL_map address and it equals 510. After this, we can
see the definition of the two level3_kernel_pgt entries: level2_kernel_pgt
and level2_fixmap_pgt. First is simple, it is page table entry which contains

pointer to the page middle directory which maps kernel space and it has:

#define KERNPG_TABLE  (_PAGE_PRESENT | _PAGE RW | _PAGE_ACCESSED
_PAGE_DIRTY)

access rights. The second - level2_fixmap_pgt is a virtual addresses which
can refer to any physical addresses even under kernel space. They represented
by the one level2_fixmap_pgt entry and 10 megabytes hole for the vsyscalls
mapping. The next level2_kernel_pgt calls the PDMS macro which creates
512 megabytes from the __START_KERNEL_map for kernel .text (after these 512
megabytes will be modules memory space).

Now, after we saw definitions of these symbols, let’s get back to the code which
is described at the beginning of the section. Remember that the rbp register
contains delta between the address of the startup_64 symbol which was got
during kernel linking and the actual address. So, for this moment, we just need
to add this delta to the base address of some page table entries, that they’ll have
correct addresses. In our case these entries are:

addq %rbp, early_leveld_pgt + (L4_START_KERNEL#*8) (%rip)
addq %rbp, level3_kernel_pgt + (510%8) (%rip)
addq %rbp, level3_kernel_pgt + (511%8) (Yrip)
addq %rbp, level2_fixmap_pgt + (506%8) (Yrip)

or the last entry of the early_level4_pgt which is the level3_kernel_pgt,
last two entries of the level3_kernel_pgt which are the level2_kernel_pgt
and the level2_fixmap_pgt and five hundreds seventh entry of the
level2_fixmap_pgt which is levell_fixmap_pgt page directory.

After all of this we will have:

early_leveld_pgt[511] -> level3_kernel_pgt[0]
level3_kernel_pgt[510] -> level2_kernel_pgt [0]
level3_kernel_pgt[511] -> level2_fixmap_pgt [0]
level2_kernel pgt[0] -> 512 MB kernel mapping
level2_fixmap_pgt[607] -> levell_fixmap_pgt

Note that we didn’t fixup base address of the early_level4_pgt and some of
other page table directories, because we will see this during of building/filling
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of structures for these page tables. As we corrected base addresses of the page
tables, we can start to build it.

Identity mapping setup

Now we can see the set up of identity mapping of early page tables. In Identity
Mapped Paging, virtual addresses are mapped to physical addresses that have the
same value, 1 : 1. Let’s look at it in detail. First of all we get the rip-relative
address of the _text and _early_level4_pgt and put they into rdi and rbx
registers:

leaq _text (%rip), %rdi
leaq early_leveld_pgt (%rip), %rbx

After this we store address of the _text in the rax and get the index of the page
global directory entry which stores _text address, by shifting _text address on
the PGDIR_SHIFT:

movq %rdi, Y%rax
shrq $PGDIR_SHIFT, Y%rax

where PGDIR_SHIFT is 39. PGDIR_SHFT indicates the mask for page global
directory bits in a virtual address. There are macro for all types of page
directories:

#define PGDIR_SHIFT 39
#define PUD_SHIFT 30
#define PMD_SHIFT 21

After this we put the address of the first entry of the early_dynamic_pgts page
table to the rdx register with the _KERNPG_TABLE access rights (see above) and
fill the early_level4_pgt with the 2 early_dynamic_pgts entries:

leaq (4096 + _KERNPG_TABLE) (%rbx), %rdx
movq Y%rdx, 0(%rbx,%rax,8)
movq Y%rdx, 8(%rbx,%rax,8)

The rbx register contains address of the early_leveld_pgt and %rax * 8 here
is index of a page global directory occupied by the _text address. So here
we fill two entries of the early_level4_pgt with address of two entries of the
early_dynamic_pgts which is related to _text. The early_dynamic_pgts is
array of arrays:

extern pmd_t early_dynamic_pgts[EARLY DYNAMIC_PAGE_TABLES] [PTRS_PER_PMD] ;

which will store temporary page tables for early kernel which we will not move
to the init_level4_pgt.

After this we add 4096 (size of the early_level4_pgt) to the rdx (it now
contains the address of the first entry of the early_dynamic_pgts) and put rdi
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(it now contains physical address of the _text) to the rax. Now we shift address
of the _text ot PUD_SHIFT to get index of an entry from page upper directory
which contains this address and clears high bits to get only pud related part:

addq $4096, Yrdx

movq Y%rdi, %rax

shrq $PUD_SHIFT, Y%rax

andl $ (PTRS_PER_PUD-1), %eax

As we have index of a page upper directory we write two addresses of the second
entry of the early_dynamic_pgts array to the first entry of this temporary page
directory:

movq %rdx, 4096 (%rbx,%rax,8)
incl heax

andl $(PTRS_PER_PUD-1), Y%eax
movq %rdx, 4096 (%rbx,’%rax,8)

In the next step we do the same operation for last page table directory, but
filling not two entries, but all entries to cover full size of the kernel.

After our early page table directories filled, we put physical address of the
early_level4d_pgt to the rax register and jump to label 1:

movq $(early_leveld_pgt - __START_KERNEL_map), %rax
jmp 1f

That’s all for now. Our early paging is prepared and we just need to finish last
preparation before we will jump into C code and kernel entry point later.

Last preparation before jump at the kernel entry point

After that we jump to the label 1 we enable PAE, PGE (Paging Global Extension)
and put the content of the phys_base (see above) to the rax register and fill
cr3 register with it:
1:

movl  $(X86_CR4_PAE | X86_CR4_PGE), %ecx

movq Y%rcx, herd

addq phys_base (Yrip), %rax
movq frax, %cr3
In the next step we check that CPU supports NX bit with:

movl $0x80000001, %eax
cpuid
movl Y%edx, hedi
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We put 0x80000001 value to the eax and execute cpuid instruction for getting
the extended processor info and feature bits. The result will be in the edx
register which we put to the edi.

Now we put 0xc0000080 or MSR_EFER to the ecx and call rdmsr instruction for
the reading model specific register.

movl $MSR_EFER, %ecx
rdmsr

The result will be in the edx:eax. General view of the EFER is following:

We will not see all fields in details here, but we will learn about this and other
MSRs in a special part about it. As we read EFER to the edx:eax, we check
_EFER_SCE or zero bit which is System Call Extensions with btsl instruction
and set it to one. By the setting SCE bit we enable SYSCALL and SYSRET
instructions. In the next step we check 20th bit in the edi, remember that this
register stores result of the cpuid (see above). If 20 bit is set (NX bit) we just
write EFER_SCE to the model specific register.

btsl $_EFER_SCE, jeax

btl $20, %edi

jnc 1f

btsl $_EFER_NX, Jeax

btsq $_PAGE_BIT_NX,early_pmd_flags()rip)
1: wrmsr

If the NX bit is supported we enable _EFER_NX and write it too, with the wrmsr
instruction. After the NX bit is set, we set some bits in the cr0 control register,
namely:

e X86_CRO_PE - system is in protected mode;

e X86_CRO_MP - controls interaction of WAIT/FWAIT instructions with TS
flag in CRO;

e X86_CRO_ET - on the 386, it allowed to specify whether the external math
coprocessor was an 80287 or 80387;
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e X86_CRO_NE - enable internal x87 floating point error reporting when set,
else enables PC style x87 error detection;

e X86_CRO_WP - when set, the CPU can’t write to read-only pages when
privilege level is 0;

e X86_CRO_AM - alignment check enabled if AM set, AC flag (in EFLAGS
register) set, and privilege level is 3;

o X86_CRO_PG - enable paging.

by the execution following assembly code:

#define CRO_STATE  (X86_CRO_PE | X86_CRO_MP | X86_CRO_ET | \
X86_CRO_NE | X86_CRO_WP | X86_CRO_AM | \

X86_CRO_PG)
movl $CRO_STATE, Y%eax
movq Y%rax, %hcr0

We already know that to run any code, and even more C code from assembly, we
need to setup a stack. As always, we are doing it by the setting of stack pointer
to a correct place in memory and resetting flags register after this:

movq initial_stack(Yrip), %rsp
pushqg $0
popfq

The most interesting thing here is the initial_stack. This symbol is defined
in the source code file and looks like:

GLOBAL (initial_stack)
.quad init_thread_union+THREAD_SIZE-8

The GLOBAL is already familiar to us from. It defined in the arch/x86/include/asm/linkage.h
header file expands to the global symbol definition:

#define GLOBAL (name) \
.globl name; \
name:

The THREAD_SIZE macro is defined in the arch/x86/include/asm/page_ 64 types.h
header file and depends on value of the KASAN_STACK_ORDER macro:

#define THREAD SIZE_ORDER (2 + KASAN_STACK_ORDER)
#define THREAD SIZE (PAGE_SIZE << THREAD SIZE ORDER)

We consider when the kasan is disabled and the PAGE_SIZE is 4096 bytes. So
the THREAD_SIZE will expands to 16 kilobytes and represents size of the stack
of a thread. Why is thread? You may already know that each process may
have parent processes and child processes. Actually, a parent process and child
process differ in stack. A new kernel stack is allocated for a new process. In
the Linux kernel this stack is represented by the union with the thread_info
structure.
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And as we can see the init_thread_union is represented by the thread_union
union. Earlier this union looked like:

union thread_union {

struct thread_info thread_info;

unsigned long stack[THREAD_SIZE/sizeof (long)];
};

but from the Linux kernel 4.9-rc1l release, thread_info was moved to the
task_struct structure which represents a thread. So, for now thread_union
looks like:

union thread_union {
#ifndef CONFIG_THREAD_INFO_IN_TASK
struct thread_info thread_info;
#endif
unsigned long stack[THREAD_SIZE/sizeof (long)];
};
where the CONFIG_THREAD_INFO_IN_TASK kernel configuration option is enabled
for x86_64 architecture. So, as we consider only x86_64 architecture in this

book, an instance of thread_union will contain only stack and thread_info
structure will be placed in the task_struct.

The init_thread_union looks like:

union thread_union init_thread_union __init_task_data = {

#ifndef CONFIG_THREAD_INFO_IN_TASK
INIT_THREAD_INFO(init_task)

#endif

};

which represents just thread stack. Now we may understand this expression:

GLOBAL (initial_stack)
.quad init_thread_union+THREAD_SIZE-8

that initial_stack symbol points to the start of the thread_union.stack
array + THREAD_SIZE which is 16 killobytes and - 8 bytes. Here we need to
subtract 8 bytes at the top of stack. This is necessary to guarantee illegal access
of the next page memory.

After the early boot stack is set, to update the Global Descriptor Table with the
lgdt instruction:

lgdt early_gdt_descr()rip)
where the early_gdt_descr is defined as:

early_gdt_descr:
.word  GDT_ENTRIES*8-1
early_gdt_descr_base:
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.quad  INIT_PER_CPU_VAR(gdt_page)

We need to reload Global Descriptor Table because now kernel works in the
low userspace addresses, but soon kernel will work in its own space. Now let’s
look at the definition of early_gdt_descr. Global Descriptor Table contains
32 entries:

#define GDT_ENTRIES 32

for kernel code, data, thread local storage segments and etc. .. it’s simple. Now
let’s look at the definition of the early_gdt_descr_base.

First of gdt_page defined as:

struct gdt_page {
struct desc_struct gdt[GDT_ENTRIES];
} __attribute__((aligned (PAGE_SIZE)));

in the arch/x86/include/asm/desc.h. It contains one field gdt which is array of
the desc_struct structure which is defined as:

struct desc_struct {

union {
struct {
unsigned int a;
unsigned int b;
};
struct {
ulé 1imitO;
ul6 baseO;
unsigned basel: 8, type: 4, s: 1, dpl: 2,
unsigned limit: 4, avl: 1, 1: 1, d: 1, g:
};
}s

} __attribute__((packed));

and presents familiar to us GDT descriptor. Also we can note that
gdt_page structure aligned to PAGE_SIZE which is 4096 bytes. It means
that gdt will occupy one page. Now let’s try to understand what is
INIT_PER_CPU_VAR. INIT_PER_CPU_VAR is a macro which defined in the
arch/x86/include/asm/percpu.h and just concats init_per_cpu__ with the
given parameter:

#define INIT_PER_CPU_VAR(var) init_per_cpu__##var

After the INIT_PER_CPU_VAR macro will be expanded, we will have
init_per_cpu__gdt_page. We can see in the linker script:

#define INIT_PER_CPU(x) init_per_cpu__##x = x + __per_cpu_load
INIT_PER_CPU(gdt_page) ;
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As we got init_per_cpu__gdt_page in INIT_PER_CPU_VAR and INIT_PER_CPU
macro from linker script will be expanded we will get offset from the

__per_cpu_load. After this calculations, we will have correct base address of
the new GDT.

Generally per-CPU variables is a 2.6 kernel feature. You can understand what
it is from its name. When we create per-CPU variable, each CPU will have its
own copy of this variable. Here we creating gdt_page per-CPU variable. There
are many advantages for variables of this type, like there are no locks, because
each CPU works with its own copy of variable and etc... So every core on
multiprocessor will have its own GDT table and every entry in the table will
represent a memory segment which can be accessed from the thread which ran on
the core. You can read in details about per-CPU variables in the Theory/per-cpu
post.

As we loaded new Global Descriptor Table, we reload segments as we did it every
time:

xorl Yeax,’%eax
movl %eax,%ds
movl %eax,%ss
movl %eax,%es
movl %eax,%fs
movl %eax,%gs

After all of these steps we set up gs register that it post to the irgstack which
represents special stack where interrupts will be handled on:

movl  $MSR_GS_BASE,Y%ecx

movl initial_gs (%rip) ,%eax
movl initial_gs+4(Y%rip) ,%edx
Wrmsr

where MSR_GS_BASE is:
#define MSR_GS_BASE 0xc0000101

We need to put MSR_GS_BASE to the ecx register and load data from the eax
and edx (which are point to the initial_gs) with wrmsr instruction. We don’t
use cs, fs, ds and ss segment registers for addressing in the 64-bit mode, but
fs and gs registers can be used. fs and gs have a hidden part (as we saw it in
the real mode for cs) and this part contains descriptor which mapped to Model
Specific Registers. So we can see above 0xc0000101 is a gs.base MSR address.
When a system call or interrupt occurred, there is no kernel stack at the entry
point, so the value of the MSR_GS_BASE will store address of the interrupt stack.

In the next step we put the address of the real mode bootparam structure to
the rdi (remember rsi holds pointer to this structure from the start) and jump
to the C code with:

movq initial_code(Y%rip), %rax
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pushq $__KERNEL_CS # set correct cs
pushq  %rax # target address in negative space
lretq

Here we put the address of the initial_code to the rax and push fake address,
__KERNEL_CS and the address of the initial_code to the stack. After this
we can see lretq instruction which means that after it return address will be
extracted from stack (now there is address of the initial_code) and jump there.
initial_code is defined in the same source code file and looks:

.balign 8
GLOBAL (initial_code)
.quad x86_64_start_kernel

As we can see initial_code contains address of the x86_64_start_kernel,
which is defined in the arch/x86/kerne/head64.c and looks like this:

asmlinkage __visible void __init x86_64_start_kernel(char * real_mode_data) {

}

It has one argument is a real_mode_data (remember that we passed address of
the real mode data to the rdi register previously).

This is first C code in the kernel!

Next to start kernel

We need to see last preparations before we can see “kernel entry point” -
start_ kernel function from the init/main.c.

First of all we can see some checks in the x86_64_start_kernel function:

BUILD_BUG_ON (MODULES_VADDR < __START_KERNEL_map);

BUILD_BUG_ON (MODULES_VADDR - __START_KERNEL_map < KERNEL_IMAGE_SIZE);

BUILD BUG_ON(MODULES LEN + KERNEL IMAGE SIZE > 2%PUD_SIZE);
BUILD_BUG_ON((__START_KERNEL_map & ~PMD_MASK) != 0);

BUILD BUG_ON((MODULES_VADDR & ~PMD_MASK) != 0);

BUILD BUG_ON('(MODULES_VADDR > __START KERNEL));

BUILD BUG_ON(!(((MODULES END - 1) & PGDIR_MASK) == (__START KERNEL & PGDIR_MASK)));
BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) <= MODULES_END);

There are checks for different things like virtual addresses of modules space is
not fewer than base address of the kernel text - __STAT_KERNEL_map, that kernel
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text with modules is not less than image of the kernel and etc... BUILD_BUG_ON
is a macro which looks as:

#define BUILD_BUG_ON(condition) ((void)sizeof(char[1 - 2*!!(condition)]))

Let’s try to understand how this trick works. Let’s take for example first
condition: MODULES_VADDR < __START_KERNEL_map. !!conditions is the same
that condition != 0. So it means if MODULES_VADDR < __START_KERNEL_map
is true, we will get 1 in the ! ! (condition) or zero if not. After 2%!! (condition)
we will get or 2 or 0. In the end of calculations we can get two different behaviors:

e We will have compilation error, because try to get size of the char array
with negative index (as can be in our case, because MODULES_VADDR can’t
be less than __START_KERNEL_map will be in our case);

¢ No compilation errors.

That’s all. So interesting C trick for getting compile error which depends on
some constants.

In the next step we can see call of the cr4d_init_shadow function which stores
shadow copy of the crd per cpu. Context switches can change bits in the crd
so we need to store crd for each CPU. And after this we can see call of the
reset_early_page_tables function where we resets all page global directory
entries and write new pointer to the PGT in cr3:

for (i = 0; i < PTRS_PER_PGD-1; i++)
early_leveld_pgt[i].pgd = 0;

next_early_pgt = 0;

write_cr3(__pa_nodebug(early_leveld_pgt));

Soon we will build new page tables. Here we can see that we go through all
Page Global Directory Entries (PTRS_PER_PGD is 512) in the loop and make it
zero. After this we set next_early_pgt to zero (we will see details about it in
the next post) and write physical address of the early_leveld_pgt to the cr3.
__pa_nodebug is a macro which will be expanded to:

((unsigned long) (x) - __START_KERNEL_map + phys_base)

After this we clear _bss from the __bss_stop to __bss_start and the next
step will be setup of the early IDT handlers, but it’s big concept so we will see it
in the next part.

Conclusion

This is the end of the first part about linux kernel initialization.

If you have questions or suggestions, feel free to ping me in twitter 0xAX, drop
me email or just create issue.
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In the next part we will see initialization of the early interruption handlers,
kernel space memory mapping and a lot more.

Please note that English is not my first language and I am really sorry
for any inconvenience. If you found any mistakes please send me PR
to linux-insides.

Links

e Model Specific Register

o Paging

e Previous part - Kernel decompression
L] NX

« ASLR

Kernel initialization. Part 2.

Early interrupt and exception handling

In the previous part we stopped before setting of early interrupt handlers. At
this moment we are in the decompressed Linux kernel, we have basic paging
structure for early boot and our current goal is to finish early preparation before
the main kernel code will start to work.

We already started to do this preparation in the previous first part of this chapter.
We continue in this part and will know more about interrupt and exception
handling.

Remember that we stopped before following loop:

for (i = 0; i < NUM_EXCEPTION_VECTORS; i++)
set_intr_gate(i, early_idt_handler_arrayl[il);

from the arch/x86/kernel/head64.c source code file. But before we started to
sort out this code, we need to know about interrupts and handlers.

Some theory

An interrupt is an event caused by software or hardware to the CPU. For example
a user have pressed a key on keyboard. On interrupt, CPU stops the current task
and transfer control to the special routine which is called - interrupt handler.
An interrupt handler handles and interrupt and transfer control back to the
previously stopped task. We can split interrupts on three types:
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e Software interrupts - when a software signals CPU that it needs kernel
attention. These interrupts are generally used for system calls;

e Hardware interrupts - when a hardware event happens, for example button
is pressed on a keyboard;

o Exceptions - interrupts generated by CPU, when the CPU detects error,
for example division by zero or accessing a memory page which is not in
RAM.

Every interrupt and exception is assigned a unique number which called - vector
number. Vector number can be any number from 0 to 2565. There is common
practice to use first 32 vector numbers for exceptions, and vector numbers from
32 to 255 are used for user-defined interrupts. We can see it in the code above -
NUM_EXCEPTION_VECTORS, which defined as:

#define NUM_EXCEPTION_VECTORS 32

CPU uses vector number as an index in the Interrupt Descriptor Table (we
will see description of it soon). CPU catch interrupts from the APIC or through
it’s pins. Following table shows 0-31 exceptions:

|Vector |Mnemonic |Description |Type |Error Code|Source

o I #E  IDivide Error  [FaltlN0 DIV amd DIV
L Vws mesemed om0 T
s e T T e e e
5 Ve lmremperms  imep w0 rmwa
0 e tovertion  vteep 0 immo smetmeerien
5|4 IBound Range BxcesdedlFauitii0  I50UD metrecrion
6 | b Immalia opeods | lPatimo 102 mesmwesien
7 evice ot Avatieblelratt 10 [Floating point or (AT
5\ #0r Il Fault  Imoort/YES  In insvruction shich can generate M
o 1 meservea  wememo 1T
To 1 #Ts Immalia 155 IPaltiYES | ITesk svivch or 198 accems
11 | P ISegment o resemt Faultii0  Inccessing seguent register
121455 ISvackseguens Faule FaltiVES | ISvack operavions
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|14 | #PF |Page fault |Fault | YES |Memory reference

1 mesevea w0 T
e A E
e o
16 | w0 wechme cneck | mwerelno 1
151w 150D 5 smceprion | Feielio V(e smmeviens
20 | WE | Wirealsmstion exe. [Feieli0 VBT viensmiems
2138 | - IResevea 1T W0 Iexvermal smermprs

To react on interrupt CPU uses special structure - Interrupt Descriptor Table
or IDT. IDT is an array of 8-byte descriptors like Global Descriptor Table, but
IDT entries are called gates. CPU multiplies vector number on 8 to find index
of the IDT entry. But in 64-bit mode IDT is an array of 16-byte descriptors
and CPU multiplies vector number on 16 to find index of the entry in the IDT.
We remember from the previous part that CPU uses special GDTR register to
locate Global Descriptor Table, so CPU uses special register IDTR for Interrupt
Descriptor Table and 1idt instruction for loading base address of the table into
this register.

64-bit mode IDT entry has following structure:
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| Offset 31..16
| I I |

Where:

e Offset - is offset to entry point of an interrupt handler;

e DPL - Descriptor Privilege Level;

e P - Segment Present flag;

e Segment selector - a code segment selector in GDT or LDT

e IST - provides ability to switch to a new stack for interrupts handling.

And the last Type field describes type of the IDT entry. There are three different
kinds of handlers for interrupts:

e Task descriptor
o Interrupt descriptor
e Trap descriptor

Interrupt and trap descriptors contain a far pointer to the entry point of the
interrupt handler. Only one difference between these types is how CPU handles
IF flag. If interrupt handler was accessed through interrupt gate, CPU clear

the IF flag to prevent other interrupts while current interrupt handler executes.

After that current interrupt handler executes, CPU sets the IF flag again with
iret instruction.

Other bits in the interrupt gate reserved and must be 0. Now let’s look how
CPU handles interrupts:

o CPU save flags register, CS, and instruction pointer on the stack.
o If interrupt causes an error code (like #PF for example), CPU saves an
error on the stack after instruction pointer;

e After interrupt handler executed, iret instruction used to return from it.

Now let’s back to code.

Fill and load IDT

We stopped at the following point:

for (i = 0; i < NUM_EXCEPTION_VECTORS; i++)
set_intr_gate(i, early_idt_handler_arrayl[il);

Here we call set_intr_gate in the loop, which takes two parameters:
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e Number of an interrupt or vector number;
o Address of the idt handler.

and inserts an interrupt gate to the IDT table which is represented by the
&idt_descr array. First of all let’s look on the early_idt_handler_array
array. It is an array which is defined in the arch/x86/include/asm/segment.h
header file contains addresses of the first 32 exception handlers:

#define EARLY_IDT_HANDLER_SIZE 9
#define NUM_EXCEPTION_VECTORS 32

extern const char early_idt_handler_array[NUM_EXCEPTION_VECTORS] [EARLY_IDT_HANDLER_SIZE];

The early_idt_handler_array is 288 bytes array which contains address of
exception entry points every nine bytes. Every nine bytes of this array consist
of two bytes optional instruction for pushing dummy error code if an exception
does not provide it, two bytes instruction for pushing vector number to the stack
and five bytes of jump to the common exception handler code.

As we can see, We're filling only first 32 IDT entries in the loop, because all
of the early setup runs with interrupts disabled, so there is no need to set up
interrupt handlers for vectors greater than 32. The early_idt_handler_array
array contains generic idt handlers and we can find its definition in the
arch/x86/kernel/head_ 64.S assembly file. For now we will skip it, but will look
it soon. Before this we will look on the implementation of the set_intr_gate
macro.

The set_intr_gate macro is defined in the arch/x86/include/asm/desc.h header
file and looks:

#define set_intr_gate(n, addr) \
do {
BUG_ON((unsigned)n > OxFF);
_set_gate(n, GATE_INTERRUPT, (void *)addr, 0, O,
__KERNEL_CS);
_trace_set_gate(n, GATE_INTERRUPT, (void *)trace_##addr,
0, 0, __KERNEL CS);

PP

} while (0)

First of all it checks with that passed interrupt number is not greater than 255
with BUG_ON macro. We need to do this check because we can have only 256
interrupts. After this, it make a call of the _set_gate function which writes
address of an interrupt gate to the IDT:

static inline void _set_gate(int gate, unsigned type, void *addr,
unsigned dpl, unsigned ist, unsigned seg)
{
gate_desc s;
pack_gate(&s, type, (unsigned long)addr, dpl, ist, seg);
write_idt_entry(idt_table, gate, &s);
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write_trace_idt_entry(gate, &s);

3

At the start of _set_gate function we can see call of the pack_gate function
which fills gate_desc structure with the given values:

static inline void pack_gate(gate_desc *gate, unsigned type, unsigned long func,
unsigned dpl, unsigned ist, unsigned seg)

{
gate->offset_low = PTR_LOW(func) ;
gate->segment = __KERNEL_CS;
gate->ist = ist;
gate->p =1;
gate->dpl = dpl;
gate->zero0 = 0;
gate->zerol = 0;
gate->type = type;
gate->offset_middle = PTR_MIDDLE (func) ;
gate->offset_high = PTR_HIGH(func);
}

As T mentioned above, we fill gate descriptor in this function. We fill three parts
of the address of the interrupt handler with the address which we got in the
main loop (address of the interrupt handler entry point). We are using three
following macros to split address on three parts:

#define PTR_LOW(x) ((unsigned long long) (x) & OxFFFF)
#define PTR_MIDDLE(x) (((unsigned long long) (x) >> 16) & OxFFFF)
#define PTR_HIGH(x) ((unsigned long long) (x) >> 32)

With the first PTR_LOW macro we get the first 2 bytes of the address, with the
second PTR_MIDDLE we get the second 2 bytes of the address and with the third
PTR_HIGH macro we get the last 4 bytes of the address. Next we setup the segment
selector for interrupt handler, it will be our kernel code segment - __KERNEL_CS.
In the next step we fill Interrupt Stack Table and Descriptor Privilege
Level (highest privilege level) with zeros. And we set GAT_INTERRUPT type in
the end.

Now we have filled IDT entry and we can call native_write_idt_entry function
which just copies filled IDT entry to the IDT:

static inline void native_write_idt_entry(gate_desc *idt, int entry, const gate_desc *gate)

{
memcpy (&idt [entry], gate, sizeof (*gate));
}

After that main loop will finished, we will have filled idt_table array of
gate_desc structures and we can load Interrupt Descriptor table with the
call of the:
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load_idt((const struct desc_ptr *)&idt_descr);

Where idt_descr is:

struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
and load_idt just executes 1idt instruction:

asm volatile("1lidt %0"::"m" (*dtr));

You can note that there are calls of the _trace_x* functions in the _set_gate
and other functions. These functions fills IDT gates in the same manner that
_set_gate but with one difference. These functions use trace_idt_table the
Interrupt Descriptor Table instead of idt_table for tracepoints (we will
cover this theme in the another part).

Okay, now we have filled and loaded Interrupt Descriptor Table, we know
how the CPU acts during an interrupt. So now time to deal with interrupts
handlers.

Early interrupts handlers

As you can read above, we filled IDT with the address of the early_idt_handler_array.
We can find it in the arch/x86/kernel /head_ 64.S assembly file:

.globl early_idt_handler_array
early_idt_handlers:

i=0

.rept NUM_EXCEPTION_VECTORS

.if (EXCEPTION_ERRCODE_MASK >> i) & 1

pushqg $0

.endif

pushq $i

jmp early_idt_handler_common

i=1i+1

.£ill early_idt_handler_array + i*EARLY_IDT_HANDLER_SIZE - ., 1, Oxcc

.endr

We can see here, interrupt handlers generation for the first 32 exceptions. We
check here, if exception has an error code then we do nothing, if exception does
not return error code, we push zero to the stack. We do it for that would stack
was uniform. After that we push exception number on the stack and jump on
the early_idt_handler_array which is generic interrupt handler for now. As
we may see above, every nine bytes of the early_idt_handler_array array
consists from optional push of an error code, push of vector number and jump
instruction. We can see it in the output of the objdump util:

$ objdump -D vmlinux
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fEfffffff81feb000 <early_idt_handler_array>:

fEffffff81£e5000:
fEffffff81£fe5002:
fEfffff£81£fe5004:
fEfffff£81£e5009:
ffffffff81fe500b:
fEffffff81fe500d:
fEffffff81feb012:
fEffffff81feb014:

6a
6a
e9
6a
6a
e9
6a
6a

00
00
17
00
01
Oe
00
02

01 00 00

01 00 00

pushq
pushq
jmpq

pushq
pushq
jmpq

pushq
pushq

$0x0
$0x0
ffffffff81feb5120 <early_idt_handler_«
$0x0
$0x1
fEfffffff81fe5120 <early_idt_handler_«
$0x0
$0x2

As i wrote above, CPU pushes flag register, CS and RIP on the stack. So before
early_idt_handler will be executed, stack will contain following data:

| %rflags |
| %cs |
| %rip |
| rsp --> error code |

Now let’s look on the early_idt_handler_common implementation. It lo-
cates in the same arch/x86/kernel/head_64.S assembly file and first of all
we can see check for NMI. We don’t need to handle it, so just ignore it in the
early_idt_handler_common:

cmpl $2, (%rsp)
je .Lis_nmi
where is_nmi:
is_nmi:
addq $16,%rsp
INTERRUPT_RETURN

drops an error code and vector number from the stack and call INTERRUPT_RETURN
which is just expands to the iretq instruction. As we checked the vector number
and it is not NMI, we check early_recursion_flag to prevent recursion in the
early_idt_handler_common and if it’s correct we save general registers on the

stack:

pushq Yrax
pushq ’rcx
pushq ’%rdx
pushq Yrsi
pushq %rdi
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pushq %r8
pushq %r9
pushq %r10
pushq Y%riil

We need to do it to prevent wrong values of registers when we return from the
interrupt handler. After this we check segment selector in the stack:

cmpl $__KERNEL_CS,96 (%rsp)
jne 11f

which must be equal to the kernel code segment and if it is not we jump on label
11 which prints PANIC message and makes stack dump.

After the code segment was checked, we check the vector number, and if it
is #PF or Page Fault, we put value from the cr2 to the rdi register and call
early_make_pgtable (well see it soon):

cmpl $14,72(%rsp)

jnz 10f
GET_CR2_INTO(%rdi)

call early_make_pgtable
andl Yeax,%eax

jz 20f

If vector number is not #PF, we restore general purpose registers from the stack:

popq %ril
popq %ri10
popq %r9
popq %r8
popq %rdi
popq ‘rsi
popq ‘rdx
popq hrcx
popq ‘rax

and exit from the handler with iret.

It is the end of the first interrupt handler. Note that it is very early interrupt
handler, so it handles only Page Fault now. We will see handlers for the other
interrupts, but now let’s look on the page fault handler.

Page fault handling
In the previous paragraph we saw first early interrupt handler which checks

interrupt number for page fault and calls early_make_pgtable for building new
page tables if it is. We need to have #PF handler in this step because there are
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plans to add ability to load kernel above 4G and make access to boot_params
structure above the 4G.

You can find implementation of the early_make_pgtable in the arch/x86/kernel /head64.c
and takes one parameter - address from the cr2 register, which caused Page
Fault. Let’s look on it:

int __init early_make_pgtable(unsigned long address)

{
unsigned long physaddr = address - __PAGE_OFFSET;
unsigned long i;
pgdval_t pgd, *pgd_p;
pudval_t pud, *pud_p;
pmdval_t pmd, *pmd_p;
I

It starts from the definition of some variables which have *val_t types. All of
these types are just:

typedef unsigned long pgdval_t;

Also we will operate with the *_t (not val) types, for example pgd_t and etc. ..
All of these types defined in the arch/x86/include/asm/pgtable_types.h and
represent structures like this:

typedef struct { pgdval_t pgd; } pgd_t;
For example,
extern pgd_t early_level4d_pgt[PTRS_PER_PGD];

Here early_level4_pgt presents early top-level page table directory which
consists of an array of pgd_t types and pgd points to low-level page entries.

After we made the check that we have no invalid address, we’re getting the
address of the Page Global Directory entry which contains #PF address and put
it’s value to the pgd variable:

pgd_p = &early_level4_pgt[pgd_index(address)].pgd;
pgd = *pgd_p;

In the next step we check pgd, if it contains correct page global directory entry
we put physical address of the page global directory entry and put it to the
pud_p with:

pud_p = (pudval_t *)((pgd & PTE_PFN_MASK) + __START_KERNEL map - phys_base);
where PTE_PFN_MASK is a macro:
#define PTE_PFN_MASK ((pteval_t)PHYSICAL_PAGE_MASK)
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which expands to:

(~(PAGE_SIZE-1)) & ((1 << 46) - 1)

or
Ob1111111111111111111111111111111111111111111111
which is 46 bits to mask page frame.

If pgd does not contain correct address we check that next_early_pgt is not
greater than EARLY_DYNAMIC_PAGE_TABLES which is 64 and present a fixed
number of buffers to set up new page tables on demand. If next_early_pgt is
greater than EARLY_DYNAMIC_PAGE_TABLES we reset page tables and start again.
If next_early_pgt is less than EARLY_DYNAMIC_PAGE_TABLES, we create new
page upper directory pointer which points to the current dynamic page table
and writes it’s physical address with the _KERPG_TABLE access rights to the page
global directory:

if (next_early_pgt >= EARLY DYNAMIC_PAGE_TABLES) {
reset_early_page_tables();
goto again;

}

pud_p = (pudval_t *)early_dynamic_pgts[next_early_pgt++];
for (i = 0; i < PTRS_PER_PUD; i++)
pud_pli] = 0;
*xpgd_p = (pgdval_t)pud_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;

After this we fix up address of the page upper directory with:

pud_p += pud_index(address);
pud = *pud_p;

In the next step we do the same actions as we did before, but with the page
middle directory. In the end we fix address of the page middle directory which
contains maps kernel text+data virtual addresses:

pmd = (physaddr & PMD_MASK) + early_pmd_flags;
pnd_p[pmd_index(address)] = pmd;

After page fault handler finished it’s work and as result our early_leveld_pgt
contains entries which point to the valid addresses.

Conclusion

This is the end of the second part about linux kernel insides. If you have questions
or suggestions, ping me in twitter 0xAX, drop me email or just create issue.
In the next part we will see all steps before kernel entry point - start_kernel
function.
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Please note that English is not my first language and I am really sorry
for any inconvenience. If you found any mistakes please send me PR
to linux-insides.

Links

¢« GNU assembly .rept
« APIC

o NMI

o Page table

e Interrupt handler

o Page Fault,

e Previous part

Kernel initialization. Part 3.

Last preparations before the kernel entry point

This is the third part of the Linux kernel initialization process series. In the
previous part we saw early interrupt and exception handling and will continue
to dive into the linux kernel initialization process in the current part. Our next
point is ‘kernel entry point’ - start_kernel function from the init/main.c source
code file. Yes, technically it is not kernel’s entry point but the start of the generic
kernel code which does not depend on certain architecture. But before we call
the start_kernel function, we must do some preparations. So let’s continue.

boot__params again

In the previous part we stopped at setting Interrupt Descriptor Table and
loading it in the IDTR register. At the next step after this we can see a call of
the copy_bootdata function:

copy_bootdata(__va(real_mode_data));

This function takes one argument - virtual address of the real_mode_data.
Remember that we passed the address of the boot_params structure from
arch/x86/include/uapi/asm/bootparam.h to the x86_64_start_kernel function
as first argument in arch/x86/kernel/head_ 64.S:

/* rsi is pointer to real mode structure with interesting info.
pass it to C */
movq frsi, Yrdi

Now let’s look at __va macro. This macro defined in init/main.c:
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#define __va(x) ((void *) ((unsigned long) (x)+PAGE_OFFSET))

where PAGE_OFFSET is __PAGE_OFFSET which is 0xffff880000000000 and the
base virtual address of the direct mapping of all physical memory. So we’re getting
virtual address of the boot_params structure and pass it to the copy_bootdata
function, where we copy real_mod_data to the boot_params which is declared
in the arch/x86 /kernel/setup.h

extern struct boot_params boot_params;
Let’s look at the copy_boot_data implementation:

static void __init copy_bootdata(char *real_mode_data)
{

char * command_line;

unsigned long cmd_line_ptr;

memcpy (&boot_params, real_mode_data, sizeof boot_params);
sanitize_boot_params (&boot_params) ;
cmd_line_ptr = get_cmd_line_ptr();
if (cmd_line_ptr) {
command_line = __va(cmd_line_ptr);
memcpy (boot_command_line, command_line, COMMAND_LINE_SIZE);

}

First of all, note that this function is declared with __init prefix. It means that
this function will be used only during the initialization and used memory will be
freed.

We can see declaration of two variables for the kernel command line and copying
real_mode_data to the boot_params with the memcpy function. The next call of
the sanitize_boot_params function which fills some fields of the boot_params
structure like ext_ramdisk_image and etc... if bootloaders which fail to ini-
tialize unknown fields in boot_params to zero. After this we're getting address
of the command line with the call of the get_cmd_line_ptr function:

unsigned long cmd_line_ptr = boot_params.hdr.cmd_line_ptr;
cmd_line_ptr |= (u64)boot_params.ext_cmd_line_ptr << 32;
return cmd_line_ptr;

which gets the 64-bit address of the command line from the kernel boot header
and returns it. In the last step we check cmd_line_ptr, getting its virtual
address and copy it to the boot_command_line which is just an array of bytes:

extern char __initdata boot_command_line[];

After this we will have copied kernel command line and boot_params structure.
In the next step we can see call of the load_ucode_bsp function which loads
processor microcode, but we will not see it here.
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After microcode was loaded we can see the check of the console_loglevel and
the early_printk function which prints Kernel Alive string. But you’ll never
see this output because early_printk is not initialized yet. It is a minor bug in
the kernel and i sent the patch - commit and you will see it in the mainline soon.
So you can skip this code.

Move on init pages

In the next step, as we have copied boot_params structure, we need to move
from the early page tables to the page tables for initialization process. We
already set early page tables for switchover, you can read about it in the previous
part and dropped all it in the reset_early_page_tables function (you can
read about it in the previous part too) and kept only kernel high mapping. After
this we call:

clear_page(init_level4d_pgt);

function and pass init_level4_pgt which also defined in the arch/x86/kernel/head_ 64.S
and looks:

NEXT_PAGE(init_level4_pgt)

.quad level3_ident_pgt - __START_KERNEL_map + _KERNPG_TABLE
.org init_level4_pgt + L4_PAGE_OFFSET*8, O
.quad level3_ident_pgt - __START_KERNEL_map + _KERNPG_TABLE
.org init_level4_pgt + L4_START_KERNEL*8, O
.quad level3_kernel_pgt - __START_KERNEL_map + _PAGE_TABLE

which maps first 2 gigabytes and 512 megabytes for the kernel code, data and
bss. clear_page function defined in the arch/x86/lib/clear page 64.S let’s
look on this function:

ENTRY (clear_page)
CFI_STARTPROC
xorl Yeax,%eax
movl $4096/64,%ecx

.p2align 4
.Lloop:
decl %hecx

#define PUT(x) movq %rax,x*8(j%rdi)
movq %rax, (%rdi)
PUT(1)
PUT(2)
PUT(3)
PUT (4)
PUT(5)
PUT(6)
PUT(7)
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leaq 64(%rdi),%rdi
jnz .Lloop

nop

ret

CFI_ENDPROC
.Lclear_page_end:
ENDPROC(clear_page)

As you can understand from the function name it clears or fills with zeros page
tables. First of all note that this function starts with the CFI_STARTPROC and
CFI_ENDPROC which are expands to GNU assembly directives:

#define CFI_STARTPROC .cfi_startproc
#define CFI_ENDPROC .cfi_endproc

and used for debugging. After CFI_STARTPROC macro we zero out eax register and
put 64 to the ecx (it will be a counter). Next we can see loop which starts with the
.Lloop label and it starts from the ecx decrement. After it we put zero from the
rax register to the rdi which contains the base address of the init_level4_pgt
now and do the same procedure seven times but every time move rdi offset on 8.
After this we will have first 64 bytes of the init_level4_pgt filled with zeros.
In the next step we put the address of the init_leveld_pgt with 64-bytes offset
to the rdi again and repeat all operations until ecx reaches zero. In the end we
will have init_level4d_pgt filled with zeros.

As we have init_leveld_pgt filled with zeros, we set the last init_level4_pgt
entry to kernel high mapping with the:

init_leveld_pgt[511] = early_leveld _pgt[511];

Remember that we dropped all early_level4_pgt entries in the reset_early_page_table
function and kept only kernel high mapping there.

The last step in the x86_64_start_kernel function is the call of the:
x86_64_start_reservations(real_mode_data);

function with the real_mode_data as argument. The x86_64_start_reservations
function defined in the same source code file as the x86_64_start_kernel
function and looks:

void __init x86_64_start_reservations(char *real_mode_data)
{
if (!boot_params.hdr.version)
copy_bootdata(__va(real_mode_data));

reserve_ebda_region() ;

start_kernel();
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You can see that it is the last function before we are in the kernel entry point -
start_kernel function. Let’s look what it does and how it works.

Last step before kernel entry point

First of all we can see in the x86_64_start_reservations function the check
for boot_params.hdr.version:

if (!boot_params.hdr.version)
copy_bootdata(__va(real_mode_data));

and if it is zero we call copy_bootdata function again with the virtual address
of the real_mode_data (read about its implementation).

In the next step we can see the call of the reserve_ebda_region function which
defined in the arch/x86/kernel/head.c. This function reserves memory block
for the EBDA or Extended BIOS Data Area. The Extended BIOS Data Area
located in the top of conventional memory and contains data about ports, disk
parameters and etc. ..

Let’s look on the reserve_ebda_region function. It starts from the checking is
paravirtualization enabled or not:

if (paravirt_enabled())
return;

we exit from the reserve_ebda_region function if paravirtualization is enabled
because if it enabled the extended bios data area is absent. In the next step we
need to get the end of the low memory:

lowmem = *(unsigned short *)__va(BIOS_LOWMEM_KILOBYTES);
lowmem <<= 10;

We're getting the virtual address of the BIOS low memory in kilobytes and
convert it to bytes with shifting it on 10 (multiply on 1024 in other words). After
this we need to get the address of the extended BIOS data are with the:

ebda_addr = get_bios_ebda();

where get_bios_ebda function defined in the arch/x86/include/asm/bios ebda.h
and looks like:

static inline unsigned int get_bios_ebda(void)

{
unsigned int address = *(unsigned short *)phys_to_virt(0x40E);
address <<= 4;
return address;

}

Let’s try to understand how it works. Here we can see that we converting
physical address 0x40E to the virtual, where 0x0040:0x000e is the segment
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which contains base address of the extended BIOS data area. Don’t worry that
we are using phys_to_virt function for converting a physical address to virtual
address. You can note that previously we have used __va macro for the same
point, but phys_to_virt is the same:

static inline void *phys_to_virt(phys_addr_t address)
{
return __va(address);

3

only with one difference: we pass argument with the phys_addr_t which depends
on CONFIG_PHYS ADDR_T_64BIT:

#ifdef CONFIG_PHYS_ADDR_T_64BIT
typedef u64 phys_addr_t;
#else
typedef u32 phys_addr_t;
#endif

This configuration option is enabled by CONFIG_PHYS_ADDR_T_64BIT. After that
we got virtual address of the segment which stores the base address of the
extended BIOS data area, we shift it on 4 and return. After this ebda_addr
variables contains the base address of the extended BIOS data area.

In the next step we check that address of the extended BIOS data area and low
memory is not less than INSANE_CUTOFF macro

if (ebda_addr < INSANE_CUTOFF)
ebda_addr = LOWMEM_CAP;

if (lowmem < INSANE_CUTOFF)
lowmem = LOWMEM_CAP;

which is:

#define INSANE_ CUTOFF 0x20000U

or 128 kilobytes. In the last step we get lower part in the low memory and
extended bios data area and call memblock_reserve function which will reserve
memory region for extended bios data between low memory and one megabyte
mark:

lowmem = min(lowmem, ebda_addr);
lowmem = min(lowmem, LOWMEM_CAP);
memblock_reserve(lowmem, 0x100000 - lowmem) ;

memblock_reserve function is defined at mm/block.c and takes two parameters:

e base physical address;
e region size.
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and reserves memory region for the given base address and size. memblock_reserve
is the first function in this book from linux kernel memory manager framework.
We will take a closer look on memory manager soon, but now let’s look at its
implementation.

First touch of the linux kernel memory manager framework

In the previous paragraph we stopped at the call of the memblock_reserve
function and as i said before it is the first function from the memory manager
framework. Let’s try to understand how it works. memblock_reserve function
just calls:

memblock_reserve_region(base, size, MAX_NUMNODES, 0);
function and passes 4 parameters there:

e physical base address of the memory region;
e size of the memory region;

¢ maximum number of numa nodes;

o flags.

At the start of the memblock_reserve_region body we can see definition of the
memblock_type structure:

struct memblock_type *_rgn = &memblock.reserved;
which presents the type of the memory block and looks:

struct memblock_type {
unsigned long cnt;
unsigned long max;
phys_addr_t total_size;
struct memblock_region *regions;

};

As we need to reserve memory block for extended bios data area, the type of the
current memory region is reserved where memblock structure is:

struct memblock {
bool bottom_up;
phys_addr_t current_limit;
struct memblock_type memory;
struct memblock_type reserved;
#ifdef CONFIG_HAVE MEMBLOCK_ PHYS_ MAP
struct memblock_type physmem;
#endif
I
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and describes generic memory block. You can see that we initialize _rgn by
assigning it to the address of the memblock.reserved. memblock is the global
variable which looks:

struct memblock memblock __initdata_memblock = {
.memory.regions = memblock_memory_init_regions,
.memory.cnt =1,
.memory.max INIT_MEMBLOCK_REGIONS,
.reserved.regions memblock_reserved_init_regions,
.reserved.cnt =1,
.reserved.max INIT_MEMBLOCK_REGIONS,

#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP

.physmem.regions = memblock_physmem_init_regions,
.physmem. cnt =1,
.physmem.max = INIT_PHYSMEM_REGIONS,
#endif
.bottom_up = false,
.current_limit = MEMBLOCK_ALLOC_ANYWHERE,
I

We will not dive into detail of this variable, but we will see all details about it
in the parts about memory manager. Just note that memblock variable defined
with the __initdata_memblock which is:

#define __initdata_memblock __meminitdata
and __meminit_data is:
#define __meminitdata __section(.meminit.data)

From this we can conclude that all memory blocks will be in the .meminit.data
section. After we defined _rgn we print information about it with memblock_dbg
macros. You can enable it by passing memblock=debug to the kernel command
line.

After debugging lines were printed next is the call of the following function:
memblock_add_range(_rgn, base, size, nid, flags);

which adds new memory block region into the .meminit.data section. As we do
not initialize _rgn but it just contains &memblock.reserved, we just fill passed
_rgn with the base address of the extended BIOS data area region, size of this
region and flags:

if (type->regions[0].size == 0) {
WARN_ON(type->cnt != 1 || type->total_size);
type->regions[0] .base = base;
type->regions[0] .size = size;
type->regions[0] .flags = flags;
memblock_set_region_node(&type->regions[0], nid);
type->total_size = size;
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return O;

3

After we filled our region we can see the call of the memblock_set_region_node
function with two parameters:

o address of the filled memory region;
e NUMA node id.

where our regions represented by the memblock_region structure:

struct memblock_region {
phys_addr_t base;
phys_addr_t size;
unsigned long flags;
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
int nid;
#endif
+;

NUMA node id depends on MAX_NUMNODES macro which is defined in the in-
clude/linux/numa.h:

#define MAX_NUMNODES (1 << NODES_SHIFT)

where NODES_SHIFT depends on CONFIG_NODES_SHIFT configuration parameter
and defined as:

#ifdef CONFIG_NODES_SHIFT

#define NODES_SHIFT CONFIG_NODES_SHIFT
#else

#define NODES_SHIFT 0
#endif

memblick_set_region_node function just fills nid field from memblock_region
with the given value:

static inline void memblock_set_region_node(struct memblock_region *r, int nid)

{
r->nid = nid;

}

After this we will have first reserved memblock for the extended bios data area in
the .meminit.data section. reserve_ebda_region function finished its work
on this step and we can go back to the arch/x86/kernel/head64.c.

We finished all preparations before the kernel entry point! The last step in the
x86_64_start_reservations function is the call of the:

start_kernel()

function from init/main.c file.
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That’s all for this part.

Conclusion

It is the end of the third part about linux kernel insides. In next part we will see
the first initialization steps in the kernel entry point - start_kernel function.
It will be the first step before we will see launch of the first init process.

If you have any questions or suggestions write me a comment or ping me at
twitter.

Please note that English is not my first language, And I am really
sorry for any inconvenience. If you find any mistakes please send me
PR to linux-insides.

Links

« BIOS data area
e« What is in the extended BIOS data area on a PC?
e Previous part

Kernel initialization. Part 4.

Kernel entry point

If you have read the previous part - Last preparations before the kernel entry
point, you can remember that we finished all pre-initialization stuff and stopped
right before the call to the start_kernel function from the init/main.c. The
start_kernel is the entry of the generic and architecture independent kernel
code, although we will return to the arch/ folder many times. If you look inside
of the start_kernel function, you will see that this function is very big. For
this moment it contains about 86 calls of functions. Yes, it’s very big and of
course this part will not cover all the processes that occur in this function. In
the current part we will only start to do it. This part and all the next which
will be in the Kernel initialization process chapter will cover it.

The main purpose of the start_kernel to finish kernel initialization process
and launch the first init process. Before the first process will be started,
the start_kernel must do many things such as: to enable lock validator, to
initialize processor id, to enable early cgroups subsystem, to setup per-cpu areas,
to initialize different caches in vfs, to initialize memory manager, rcu, vmalloc,
scheduler, IRQs, ACPI and many many more. Only after these steps will we see
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the launch of the first init process in the last part of this chapter. So much
kernel code awaits us, let’s start.

NOTE: All parts from this big chapter Linux Kernel initialization
process will not cover anything about debugging. There will be a
separate chapter about kernel debugging tips.

A little about function attributes

As T wrote above, the start_kernel function is defined in the init/main.c. This
function defined with the __init attribute and as you already may know from
other parts, all functions which are defined with this attribute are necessary
during kernel initialization.

#define __init __section(.init.text) __cold notrace

After the initialization process have finished, the kernel will release these sections
with a call to the free_initmem function. Note also that __init is defined with
two attributes: __cold and notrace. The purpose of the first cold attribute is
to mark that the function is rarely used and the compiler must optimize this
function for size. The second notrace is defined as:

#define notrace __attribute__((no_instrument_function))

where no_instrument_function says to the compiler not to generate profiling
function calls.

In the definition of the start_kernel function, you can also see the __visible
attribute which expands to the:

#define __visible __attribute__((externally_visible))

where externally_visible tells to the compiler that something uses this func-
tion or variable, to prevent marking this function/variable as unusable. You
can find the definition of this and other macro attributes in include/linux/init.h.

First steps in the start_ kernel

At the beginning of the start_kernel you can see the definition of these two
variables:

char *command_line;
char *after_dashes;

The first represents a pointer to the kernel command line and the second will
contain the result of the parse_args function which parses an input string
with parameters in the form name=value, looking for specific keywords and
invoking the right handlers. We will not go into the details related with these
two variables at this time, but will see it in the next parts. In the next step we
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can see a call to the set_task_stack_end_magic function. This function takes
address of the init_task and sets STACK_END_MAGIC (0x57AC6E9D) as canary
for it. init_task represents the initial task structure:

struct task_struct init_task = INIT_TASK(init_task);

where task_struct stores all the information about a process. I will not explain
this structure in this book because it’s very big. You can find its definition
in include/linux/sched.h. At this moment task_struct contains more than
100 fields! Although you will not see the explanation of the task_struct in
this book, we will use it very often since it is the fundamental structure which
describes the process in the Linux kernel. I will describe the meaning of the
fields of this structure as we meet them in practice.

You can see the definition of the init_task and it initialized by the INIT_TASK
macro. This macro is from include/linux/init_task.h and it just fills the
init_task with the values for the first process. For example it sets:

e init process state to zero or runnable. A runnable process is one which is
waiting only for a CPU to run on;

e init process flags - PF_KTHREAD which means - kernel thread;

e a list of runnable task;

e process address space;

e init process stack to the &init_thread_info which is init_thread_union.thread_info
and initthread_union has type - thread_union which contains
thread_info and process stack:

union thread_union {

struct thread_info thread_info;

unsigned long stack[THREAD_SIZE/sizeof (long)];
}

Every process has its own stack and it is 16 kilobytes or 4 page frames. in
x86_64. We can note that it is defined as array of unsigned long. The next
field of the thread_union is - thread_info defined as:

struct thread_info {

struct task_struct *task;

struct exec_domain *exec_domain;

__u32 flags;

__u32 status;

__u32 cpu;

int saved_preempt_count;
mm_segment_t addr_limit;

struct restart_block restart_block;

void __user *sysenter_return;
unsigned int sig_on_uaccess_error:1l;
unsigned int uaccess_err:1;
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and occupies 52 bytes. The thread_info structure contains architecture-specific
information on the thread. We know that on x86_64 the stack grows down
and thread_union.thread_info is stored at the bottom of the stack in our
case. So the process stack is 16 kilobytes and thread_info is at the bottom.
The remaining thread_ size will be 16 kilobytes - 62 bytes = 16332 bytes.
Note that thread_union represented as the union and not structure, it means
that thread_info and stack share the memory space.

Schematically it can be represented as follows:

B +
| |
| |
| stack |
| |
| |
| | |
| | |
| | |
| o | o +
| | | |
| thread_info | <===———————= >| task_struct |
| | | |
e + e +

http://www.quora.com/In-Linux-kernel-Why-thread__info-structure-and-the-
kernel-stack-of-a-process-binds-in-union-construct

So the INIT_TASK macro fills these task_struct's fields and many many more.
As I already wrote above, I will not describe all the fields and values in the
INIT_TASK macro but we will see them soon.

Now let’s go back to the set_task_stack_end_magic function. This function
defined in the kernel/fork.c and sets a canary to the init process stack to prevent
stack overflow.

void set_task_stack_end_magic(struct task_struct *tsk)
{

unsigned long *stackend;

stackend = end_of_stack(tsk);

*stackend = STACK_END_MAGIC; /* for overflow detection */
}

Its implementation is simple. set_task_stack_end_magic gets the end of the
stack for the given task_struct with the end_of_stack function. Earlier (and
now for all architectures besides x86_64) stack was located in the thread_info
structure. So the end of a process stack depends on the CONFIG_STACK_GROWSUP
configuration option. As we learn in x86_64 architecture, the stack grows down.
So the end of the process stack will be:
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(unsigned long *) (task_thread_info(p) + 1);

where task_thread_info just returns the stack which we filled with the
INIT_TASK macro:

#define task_thread_info(task) ((struct thread_info *) (task)->stack)

From the Linux kernel v4.9-rc1 release, thread_info structure may contains
only flags and stack pointer resides in task_struct structure which represents
a thread in the Linux kernel. This depends on CONFIG_THREAD_INFO_IN_TASK
kernel configuration option which is enabled by default for x86_64. You can be
sure in this if you will look in the init/main.c configuration build file:

config THREAD_INFO_IN_TASK
bool
help
Select this to move thread_info off the stack into task_struct. To
make this work, an arch will need to remove all thread_info fields
except flags and fix any runtime bugs.

One subtle change that will be needed is to use try_get_task_stack()
and put_task_stack() in save_thread_stack_tsk() and get_wchan().

and arch/x86/Kconfig:

config X86
def_bool y

select THREAD_INFO_IN_TASK

So, in this way we may just get end of a thread stack from the given task_struct
structure:

#ifdef CONFIG_THREAD_INFO_IN_TASK
static inline unsigned long *end_of_stack(const struct task_struct *task)

{

return task->stack;

}
#endif

As we got the end of the init process stack, we write STACK_END_MAGIC there.
After canary is set, we can check it like this:

if (*end_of_stack(task) != STACK_END_MAGIC) {
//
// handle stack overflow here
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The next function after the set_task_stack_end_magic is smp_setup_processor_id.
This function has an empty body for x86_64:

void __init __weak smp_setup_processor_id(void)
{
}

as it not implemented for all architectures, but some such as s390 and arm64.

The next function in start_kernel is debug_objects_early_init. Implemen-
tation of this function is almost the same as lockdep_init, but fills hashes for
object debugging. As I wrote above, we will not see the explanation of this and
other functions which are for debugging purposes in this chapter.

After the debug_object_early_init function we can see the call of the
boot_init_stack_canary function which fills task_struct->canary with the
canary value for the -fstack-protector gcc feature. This function depends
on the CONFIG_CC_STACKPROTECTOR configuration option and if this option
is disabled, boot_init_stack_canary does nothing, otherwise it generates
random numbers based on random pool and the TSC:

get_random_bytes(&canary, sizeof (canary));
tsc = __native_read_tsc();
canary += tsc + (tsc << 32UL);

After we got a random number, we fill the stack_canary field of task_struct

with it:

current->stack_canary = canary;

and write this value to the top of the IRQ stack with the:
this_cpu_write(irq_stack_union.stack_canary, canary); // read below about this_cpu_write

Again, we will not dive into details here, we will cover it in the part about
IRQs. As canary is set, we disable local and early boot IRQs and register the
bootstrap CPU in the CPU maps. We disable local IRQs (interrupts for current
CPU) with the local_irq disable macro which expands to the call of the
arch_local_irq_disable function from include/linux/percpu-defs.h:

static inline notrace void arch_local_irq_disable(void)
{
native_irq_disable();

3

Where native_irq_disable is cli instruction for x86_64. As interrupts are
disabled we can register the current CPU with the given ID in the CPU bitmap.
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The first processor activation

The current function from the start_kernel is boot_cpu_init. This function
initializes various CPU masks for the bootstrap processor. First of all it gets the
bootstrap processor id with a call to:

int cpu = smp_processor_id();

For now it is just zero. If the CONFIG_DEBUG_PREEMPT configuration option is
disabled, smp_processor_id just expands to the call of raw_smp_processor_id
which expands to the:

#define raw_smp_processor_id() (this_cpu_read(cpu_number))

this_cpu_read as many other function like this (this_cpu_write,
this_cpu_add and etc...) defined in the include/linux/percpu-defs.h
and presents this_cpu operation. These operations provide a way of optimizing

access to the per-cpu variables which are associated with the current processor.

In our case it is this_cpu_read:
__pcpu_size_call_return(this_cpu_read_, pcp)

Remember that we have passed cpu_number as pcp to the this_cpu_read from
the raw_smp_processor_id. Now let’s look at the __pcpu_size_call_return
implementation:

#define __pcpu_size_call_return(stem, variable)

€t
typeof (variable) pscr_ret__;
__verify_pcpu_ptr(&(variable));
switch(sizeof (variable)) {
case 1: pscr_ret__ = stem##l(variable); break;
case 2: pscr_ret__ = stem##2(variable); break;
case 4: pscr_ret__ = stem##4(variable); break;
case 8: pscr_ret__ = stem##8(variable); break;
default:

__bad_size_call_parameter(); break;

}
pscr_ret__;

B

Yes, it looks a little strange but it’s easy. First of all we can see the definition
of the pscr_ret__ variable with the int type. Why int? Ok, variable is
common_cpu and it was declared as per-cpu int variable:

DECLARE_PER_CPU_READ_MOSTLY(int, cpu_number);

In the next step we call __verify_pcpu_ptr with the address of cpu_number.
__veryf_pcpu_ptr used to verify that the given parameter is a per-cpu pointer.

]
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After that we set pscr_ret__ value which depends on the size of the vari-
able. Our common_cpu variable is int, so it 4 bytes in size. It means that
we will get this_cpu_read_4(common_cpu) in pscr_ret__. In the end of the

__pcpu_size_call_return we just call it. this_cpu_read_4 is a macro:
#define this_cpu_read_4(pcp) percpu_from_op("mov", pcp)

which calls percpu_from_op and pass mov instruction and per-cpu variable there.
percpu_from_op will expand to the inline assembly call:

asm("movl %%gs:%1,%0" : "=r" (pfo_ret__) : "m" (common_cpu))

Let’s try to understand how it works and what it does. The gs segment register
contains the base of per-cpu area. Here we just copy common_cpu which is in
memory to the pfo_ret__ with the movl instruction. Or with another words:

this_cpu_read(common_cpu)
is the same as:
movl %gs:$common_cpu, $pfo_ret__

As we didn’t setup per-cpu area, we have only one - for the current running
CPU, we will get zero as a result of the smp_processor_id.

As we got the current processor id, boot_cpu_init sets the given CPU online,
active, present and possible with the:

set_cpu_online(cpu, true);
set_cpu_active(cpu, true);
set_cpu_present (cpu, true);
set_cpu_possible(cpu, true);

All of these functions use the concept - cpumask. cpu_possible is a set of CPU
ID’s which can be plugged in at any time during the life of that system boot.
cpu_present represents which CPUs are currently plugged in. cpu_online
represents subset of the cpu_present and indicates CPUs which are available
for scheduling. These masks depend on the CONFIG_HOTPLUG_CPU configuration
option and if this option is disabled possible == present and active ==
online. Implementation of the all of these functions are very similar. Every
function checks the second parameter. If it is true, it calls cpumask_set_cpu
or cpumask_clear_cpu otherwise.

For example let’s look at set_cpu_possible. As we passed true as the second
parameter, the:

cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));

will be called. First of all let’s try to understand the to_cpumask macro. This
macro casts a bitmap to a struct cpumask *. CPU masks provide a bitmap
suitable for representing the set of CPU’s in a system, one bit position per CPU
number. CPU mask presented by the cpu_mask structure:
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typedef struct cpumask { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t;
which is just bitmap declared with the DECLARE_BITMAP macro:
#define DECLARE_BITMAP(name, bits) unsigned long name[BITS_TO_LONGS(bits)]

As we can see from its definition, the DECLARE_BITMAP macro expands to the
array of unsigned long. Now let’s look at how the to_cpumask macro is
implemented:

#define to_cpumask(bitmap) \
((struct cpumask *) (1 7 (bitmap) \
(void *)sizeof (__check_is_bitmap(bitmap))))

I don’t know about you, but it looked really weird for me at the first time.
We can see a ternary operator here which is true every time, but why the
__check_is_bitmap here? It’s simple, let’s look at it:

static inline int __check_is_bitmap(const unsigned long *bitmap)
{

return 1;

3

Yeah, it just returns 1 every time. Actually we need in it here only for one
purpose: at compile time it checks that the given bitmap is a bitmap, or in other
words it checks that the given bitmap has a type of unsigned long *. So we just
pass cpu_possible_bits to the to_cpumask macro for converting the array of
unsigned long to the struct cpumask *. Now we can call cpumask_set_cpu
function with the cpu - 0 and struct cpumask *cpu_possible_bits. This
function makes only one call of the set_bit function which sets the given cpu
in the cpumask. All of these set_cpu_* functions work on the same principle.

If you’re not sure that this set_cpu_#* operations and cpumask are not clear for
you, don’t worry about it. You can get more info by reading the special part
about it - cpumask or documentation.

As we activated the bootstrap processor, it’s time to go to the next function
in the start_kernel. Now it is page_address_init, but this function does
nothing in our case, because it executes only when all RAM can’t be mapped
directly.

Print linux banner

The next call is pr_notice:

#define pr_notice(fmt, ...) \
printk (KERN_NOTICE pr_fmt(fmt), ##_ VA ARGS_ )

as you can see it just expands to the printk call. At this moment we use
pr_notice to print the Linux banner:
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pr_notice("%s", linux_banner);
which is just the kernel version with some additional parameters:

Linux version 4.0.0-rc6+ (alex@localhost) (gcc version 4.9.1 (Ubuntu 4.9.1-16ubuntu6) ) #31¢

Architecture-dependent parts of initialization

The next step is architecture-specific initialization. The Linux kernel does
it with the call of the setup_arch function. This is a very big function like
start_kernel and we do not have time to consider all of its implementation in
this part. Here we’ll only start to do it and continue in the next part. As it
is architecture-specific, we need to go again to the arch/ directory. The
setup_arch function defined in the arch/x86/kernel/setup.c source code file and
takes only one argument - address of the kernel command line.

This function starts from the reserving memory block for the kernel _text
and _data which starts from the _text symbol (you can remember it from
the arch/x86/kernel/head_64.S) and ends before __bss_stop. We are using
memblock for the reserving of memory block:

memblock_reserve(__pa_symbol(_text), (unsigned long)__bss_stop - (unsigned long)_text);

You can read about memblock in the Linux kernel memory management Part 1..
As you can remember memblock_reserve function takes two parameters:

e base physical address of a memory block;
¢ size of a memory block.

We can get the base physical address of the _text symbol with the __pa_symbol
mMacro:

#define __pa_symbol(x) \
__phys_addr_symbol (__phys_reloc_hide((unsigned long) (x)))

First of all it calls __phys_reloc_hide macro on the given parameter. The
__phys_reloc_hide macro does nothing for x86_64 and just returns the given
parameter. Implementation of the __phys_addr_symbol macro is easy. It just
subtracts the symbol address from the base address of the kernel text mapping
base virtual address (you can remember that it is __START_KERNEL_map) and
adds phys_base which is the base address of _text:

#define __phys_addr_symbol(x) \
((unsigned long)(x) - __START_KERNEL map + phys_base)

After we got the physical address of the _text symbol, memblock_reserve can
reserve a memory block from the _text to the __bss_stop - _text.
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Reserve memory for initrd

In the next step after we reserved place for the kernel text and data is reserving
place for the initrd. We will not see details about initrd in this post, you just
may know that it is temporary root file system stored in memory and used by
the kernel during its startup. The early_reserve_initrd function does all
work. First of all this function gets the base address of the ram disk, its size
and the end address with:

u64 ramdisk_image = get_ramdisk_image();
u64 ramdisk_size = get_ramdisk_size();
u64 ramdisk_end PAGE_ALIGN(ramdisk_image + ramdisk_size);

All of these parameters are taken from boot_params. If you have read the
chapter about Linux Kernel Booting Process, you must remember that we filled
the boot_params structure during boot time. The kernel setup header contains
a couple of fields which describes ramdisk, for example:

Field name: ramdisk_image
Type: write (obligatory)
Offset/size: 0x218/4
Protocol: 2.00+

The 32-bit linear address of the initial ramdisk or ramfs. Leave at
zero if there is no initial ramdisk/ramfs.

So we can get all the information that interests us from boot_params. For
example let’s look at get_ramdisk_image:

static u64 __init get_ramdisk_image(void)

{
u64 ramdisk_image = boot_params.hdr.ramdisk_image;
ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
return ramdisk_image;

}

Here we get the address of the ramdisk from the boot_params and shift left it on
32. We need to do it because as you can read in the Documentation/x86/zero-
page.txt:

0C0/004 ALL ext_ramdisk_image ramdisk_image high 32bits

So after shifting it on 32, we’re getting a 64-bit address in ramdisk_image
and we return it. get_ramdisk_size works on the same principle as
get_ramdisk_image, but it used ext_ramdisk_size instead of ext_ramdisk_image.
After we got ramdisk’s size, base address and end address, we check that
bootloader provided ramdisk with the:
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if (!boot_params.hdr.type_of_loader ||
'ramdisk_image || !'ramdisk_size)
return;

and reserve memory block with the calculated addresses for the initial ramdisk
in the end:

memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image) ;

Conclusion

It is the end of the fourth part about the Linux kernel initialization process. We
started to dive in the kernel generic code from the start_kernel function in this
part and stopped on the architecture-specific initialization in the setup_arch.
In the next part we will continue with architecture-dependent initialization steps.

If you have any questions or suggestions write me a comment or ping me at
twitter.

Please note that English is not my first language, And I am really
sorry for any inconvenience. If you find any mistakes please send me
a PR to linux-insides.

Links

e GCC function attributes
e this_cpu operations

e cpumask

¢ lock validator

e cgroups

o stack buffer overflow

o IRQs

e initrd

e Previous part

Kernel initialization. Part 5.

Continue of architecture-specific initialization

In the previous part, we stopped at the initialization of an architecture-specific
stuff from the setup_arch function and now we will continue with it. As we
reserved memory for the initrd, next step is the olpc_ofw_detect which detects
One Laptop Per Child support. We will not consider platform related stuff in
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this book and will skip functions related with it. So let’s go ahead. The next step
is the early_trap_init function. This function initializes debug (#DB - raised
when the TF flag of rflags is set) and int3 (#BP) interrupts gate. If you don’t
know anything about interrupts, you can read about it in the Early interrupt
and exception handling. In x86 architecture INT, INTO and INT3 are special
instructions which allow a task to explicitly call an interrupt handler. The INT3
instruction calls the breakpoint (#BP) handler. You may remember, we already
saw it in the part about interrupts: and exceptions:

Debug interrupt #DB is the primary method of invoking debuggers.
early_trap_init defined in the arch/x86/kernel/traps.c. This functions sets
#DB and #BP handlers and reloads IDT:

void __init early_trap_init(void)

{
set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
load_idt(&idt_descr);

}

We already saw implementation of the set_intr_gate in the previous part
about interrupts. Here are two similar functions set_intr_gate_ist and
set_system_intr_gate_ist. Both of these two functions take three parameters:

o number of the interrupt;

o base address of the interrupt/exception handler;

o third parameter is - Interrupt Stack Table. IST is a new mechanism in
the x86_64 and part of the TSS. Every active thread in kernel mode has
own kernel stack which is 16 kilobytes. While a thread in user space, this
kernel stack is empty.

In addition to per-thread stacks, there are a couple of specialized stacks asso-
ciated with each CPU. All about these stack you can read in the linux kernel
documentation - Kernel stacks. x86_64 provides feature which allows to switch
to a new special stack for during any events as non-maskable interrupt and
etc... And the name of this feature is - Interrupt Stack Table. There can
be up to 7 IST entries per CPU and every entry points to the dedicated stack.
In our case this is DEBUG_STACK.

set_intr_gate_ist and set_system_intr_gate_ist work by the same prin-
ciple as set_intr_gate with only one difference. Both of these functions checks
interrupt number and call _set_gate inside:

99


http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-2.html
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-2.html
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-2.html
https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/traps.c
http://en.wikipedia.org/wiki/Interrupt_descriptor_table
http://en.wikipedia.org/wiki/Task_state_segment
https://www.kernel.org/doc/Documentation/x86/kernel-stacks

BUG_ON((unsigned)n > OxFF);
_set_gate(n, GATE_INTERRUPT, addr, O, ist, __KERNEL_CS);

as set_intr_gate does this. But set_intr_gate calls _set_gate with dpl -
0, and ist - 0, but set_intr_gate_ist and set_system_intr_gate_ist sets
ist as DEBUG_STACK and set_system_intr_gate_ist sets dpl as 0x3 which is
the lowest privilege. When an interrupt occurs and the hardware loads such a
descriptor, then hardware automatically sets the new stack pointer based on the
IST value, then invokes the interrupt handler. All of the special kernel stacks
will be set in the cpu_init function (we will see it later).

As #DB and #BP gates written to the idt_descr, we reload IDT table with
load_idt which just calss 1dtr instruction. Now let’s look on interrupt handlers
and will try to understand how they works. Of course, I can’t cover all interrupt
handlers in this book and I do not see the point in this. It is very interesting
to delve in the linux kernel source code, so we will see how debug handler
implemented in this part, and understand how other interrupt handlers are
implemented will be your task.

#DB handler

As you can read above, we passed address of the #DB handler as &debug in
the set_intr_gate_ist. Ixr.free-electrons.com is a great resource for search-
ing identifiers in the linux kernel source code, but unfortunately you will not
find debug handler with it. All of you can find, it is debug definition in the
arch/x86/include/asm/traps.h:

asmlinkage void debug(void);

We can see asmlinkage attribute which tells to us that debug is function written
with assembly. Yeah, again and again assembly :). Implementation of the #DB
handler as other handlers is in this arch/x86/entry/entry_64.S and defined with
the idtentry assembly macro:

idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK

idtentry is a macro which defines an interrupt/exception entry point. As you
can see it takes five arguments:

o name of the interrupt entry point;

¢ name of the interrupt handler;

e has interrupt error code or not;

o paranoid - if this parameter = 1, switch to special stack (read above);
o shift_ist - stack to switch during interrupt.

Now let’s look on idtentry macro implementation. This macro defined in
the same assembly file and defines debug function with the ENTRY macro. For
the start idtentry macro checks that given parameters are correct in case
if need to switch to the special stack. In the next step it checks that give
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interrupt returns error code. If interrupt does not return error code (in our
case #DB does not return error code), it calls INTR_FRAME or XCPT_FRAME if
interrupt has error code. Both of these macros XCPT_FRAME and INTR_FRAME
do nothing and need only for the building initial frame state for interrupts.
They uses CFI directives and used for debugging. More info you can find
in the CFI directives. As comment from the arch/x86/kernel/entry 64.S
says: CFI macros are used to generate dwarf2 unwind information for
better backtraces. They don't change any code. so we will ignore them.

.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1

ENTRY (\sym)
/* Sanity check */
.if \shift_ist != -1 && \paranoid ==
.error "using shift_ist requires paranoid=1"
.endif

.if \has_error_code
XCPT_FRAME

.else

INTR_FRAME

.endif

You can remember from the previous part about early interrupts/exceptions
handling that after interrupt occurs, current stack will have following format:

Error Code <--—- rsp

e +

I I
+40 | Ss I
+32 | RSP I
+24 | RFLAGS I
+16 | cs I
+8 | RIP I
I

I

The next two macro from the idtentry implementation are:

ASM_CLAC
PARAVIRT_ADJUST_EXCEPTION_FRAME

First ASM_CLAC macro depends on CONFIG_X86_SMAP configuration option
and need for security reason, more about it you can read here. The second
PARAVIRT_ADJUST_EXCEPTION_FRAME macro is for handling handle Xen-type-
exceptions (this chapter about kernel initialization and we will not consider
virtualization stuff here).
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The next piece of code checks if interrupt has error code or not and pushes $-1
which is Oxffffffffffffffff on x86_64 on the stack if not:

.ifeq \has_error_code
pushg_cfi $-1
.endif

We need to do it as dummy error code for stack consistency for all interrupts. In
the next step we subtract from the stack pointer $0RIG_RAX-R15:

subqg $0RIG_RAX-R15, Yrsp

where ORIRG_RAX, R15 and other macros defined in the arch/x86/include/asm/calling.h
and ORIG_RAX-R15 is 120 bytes. General purpose registers will occupy these

120 bytes because we need to store all registers on the stack during interrupt
handling. After we set stack for general purpose registers, the next step is
checking that interrupt came from userspace with:

testl $3, CS(%rsp)
jnz 1f

Here we checks first and second bits in the CS. You can remember that CS register
contains segment selector where first two bits are RPL. All privilege levels are
integers in the range 0-3, where the lowest number corresponds to the highest
privilege. So if interrupt came from the kernel mode we call save_paranoid
or jump on label 1 if not. In the save_paranoid we store all general purpose
registers on the stack and switch user gs on kernel gs if need:

movl $1,%ebx
movl $MSR_GS_BASE,%ecx
rdmsr
testl %edx,%edx
js 1f
SWAPGS
xorl Y%ebx,%ebx
1: ret

In the next steps we put pt_regs pointer to the rdi, save error code in the rsi
if it has and call interrupt handler which is - do_debug in our case from the
arch/x86 /kernel/traps.c. do_debug like other handlers takes two parameters:

e pt_regs - is a structure which presents set of CPU registers which are
saved in the process’ memory region;
e error code - error code of interrupt.

After interrupt handler finished its work, calls paranoid_exit which restores
stack, switch on userspace if interrupt came from there and calls iret. That’s
all. Of course it is not all :), but we will see more deeply in the separate chapter
about interrupts.
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This is general view of the idtentry macro for #DB interrupt. All inter-
rupts are similar to this implementation and defined with idtentry too. After
early_trap_init finished its work, the next function is early_cpu_init. This
function defined in the arch/x86/kernel/cpu/common.c and collects information
about CPU and its vendor.

Early ioremap initialization

The next step is initialization of early ioremap. In general there are two ways
to communicate with devices:

o I/O Ports;
e Device memory.

We already saw first method (outb/inb instructions) in the part about linux
kernel booting process. The second method is to map I/O physical addresses
to virtual addresses. When a physical address is accessed by the CPU, it may
refer to a portion of physical RAM which can be mapped on memory of the I/O
device. So ioremap used to map device memory into kernel address space.

As i wrote above next function is the early_ioremap_init which re-maps I/O
memory to kernel address space so it can access it. We need to initialize early
ioremap for early initialization code which needs to temporarily map I/O or
memory regions before the normal mapping functions like ioremap are available.
Implementation of this function is in the arch/x86/mm/ioremap.c. At the start
of the early_ioremap_init we can see definition of the pmd point with pmd_t
type (which presents page middle directory entry typedef struct { pmdval_t
pmd; } pmd_t; where pmdval_t is unsigned long) and make a check that
fixmap aligned in a correct way:

pmd_t *pmd;
BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));

fixmap - is fixed virtual address mappings which extends from FIXADDR_START
to FIXADDR_TOP. Fixed virtual addresses are needed for subsystems that
need to know the virtual address at compile time. After the check
early_ioremap_init makes a call of the early_ioremap_setup function
from the mm/early ioremap.c. early_ioremap_setup fills slot_virt array
of the unsigned long with virtual addresses with 512 temporary boot-time
fix-mappings:

for (i = 0; i < FIX_BTMAPS_SLOTS; i++)
slot_virt[i] = __fix_to_virt(FIX_BTMAP_BEGIN - NR_FIX_BTMAPS*i);

After this we get page middle directory entry for the FIX_BTMAP_BEGIN and put
to the pmd variable, fills bm_pte with zeros which is boot time page tables and
call pmd_populate_kernel function for setting given page table entry in the
given page middle directory:
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pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
memset (bm_pte, 0, sizeof (bm_pte));
pmd_populate_kernel (&init_mm, pmd, bm_pte);

That’s all for this. If you feeling puzzled, don’t worry. There is special part
about ioremap and fixmaps in the Linux Kernel Memory Management. Part 2
chapter.

Obtaining major and minor numbers for the root device

After early ioremap was initialized, you can see the following code:
ROOT_DEV = o0ld_decode_dev(boot_params.hdr.root_dev);

This code obtains major and minor numbers for the root device where initrd
will be mounted later in the do_mount_root function. Major number of the
device identifies a driver associated with the device. Minor number referred on
the device controlled by driver. Note that o1ld_decode_dev takes one parameter
from the boot_params_structure. As we can read from the x86 linux kernel
boot protocol:

Field name: root_dev

Type: modify (optional)
Offset/size: Ox1fc/2
Protocol: ALL

The default root device device number. The use of this field is
deprecated, use the "root=" option on the command line instead.

Now let’s try to understand what old_decode_dev does. Actually it just calls
MKDEV inside which generates dev_t from the give major and minor numbers.
It’s implementation is pretty simple:

static inline dev_t old_decode_dev(ul6 wval)
{

return MKDEV((val >> 8) & 255, val & 255);
}

where dev_t is a kernel data type to present major/minor number pair. But
what’s the strange old_ prefix? For historical reasons, there are two ways of
managing the major and minor numbers of a device. In the first way major and
minor numbers occupied 2 bytes. You can see it in the previous code: 8 bit
for major number and 8 bit for minor number. But there is a problem: only
256 major numbers and 256 minor numbers are possible. So 16-bit integer was
replaced by 32-bit integer where 12 bits reserved for major number and 20 bits
for minor. You can see this in the new_decode_dev implementation:

static inline dev_t new_decode_dev(u32 dev)

{
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unsigned major = (dev & Oxfff00) >> 8;
unsigned minor = (dev & Oxff) | ((dev >> 12) & O0xfff00);
return MKDEV(major, minor);

}

After calculation we will get Oxfff or 12 bits for major if it is Oxffffffff and
Oxfffff or 20 bits for minor. So in the end of execution of the 01d_decode_dev
we will get major and minor numbers for the root device in ROOT_DEV.

Memory map setup

The next point is the setup of the memory map with the call of the
setup_memory_map function. But before this we setup different parameters as
information about a screen (current row and column, video page and etc... (you
can read about it in the Video mode initialization and transition to protected
mode)), Extended display identification data, video mode, bootloader type and
etc...:

screen_info = boot_params.screen_info;

edid_info = boot_params.edid_info;

saved_video_mode = boot_params.hdr.vid_mode;

bootloader_type = boot_params.hdr.type_of_loader;

if ((bootloader_type >> 4) == Oxe) {
bootloader_type &= Oxf;

bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
}
bootloader_version = bootloader_type & Oxf;
bootloader_version |= boot_params.hdr.ext_loader_ver << 4;

All of these parameters we got during boot time and stored in the boot_params
structure. After this we need to setup the end of the I/O memory. As you know
one of the main purposes of the kernel is resource management. And one of the
resource is memory. As we already know there are two ways to communicate
with devices are I/O ports and device memory. All information about registered
resources are available through:

o /proc/ioports - provides a list of currently registered port regions used for
input or output communication with a device;

e /proc/iomem - provides current map of the system’s memory for each
physical device.

At the moment we are interested in /proc/iomem:

cat /proc/iomem

00000000-00000fff : reserved
00001000-0009d7ff : System RAM
0009d800-0009ffff : reserved
000a0000-000pffff : PCI Bus 0000:00
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000c0000-000cffff : Video ROM
00040000-000d3fff : PCI Bus 0000:00
000d4000-000d47£fff : PCI Bus 0000:00
000d48000-000dbfff : PCI Bus 0000:00
000dc000-000dffff : PCI Bus 0000:00
000e0000-000fffff : reserved
000e0000-000e3fff : PCI Bus 0000:00
000e4000-000e7fff : PCI Bus 0000:00
000£0000-000fffff : System ROM

As you can see range of addresses are shown in hexadecimal notation with its
owner. Linux kernel provides API for managing any resources in a general way.
Global resources (for example PICs or I/0O ports) can be divided into subsets -
relating to any hardware bus slot. The main structure resource:

struct resource {
resource_size_t start;
resource_size_t end;
const char *name;
unsigned long flags;
struct resource *parent, *sibling, *child;

};

presents abstraction for a tree-like subset of system resources. This structure pro-
vides range of addresses from start to end (resource_size_t is phys_addr_t or
u64 for x86_64) which a resource covers, name of a resource (you see these names
in the /proc/iomem output) and flags of a resource (All resources flags defined
in the include/linux/ioport.h). The last are three pointers to the resource
structure. These pointers enable a tree-like structure:

pommmm + T +
| | | |
| parent [ -————- | sibling |
| | | |
T + e +
|
|
Fomm o +
| |
| child |
| |
pomm +
Every subset of resources has root range resources. For iomem it is

iomem_resource which defined as:

struct resource iomem_resource = {
.name = "PCI mem",
.start = 0,
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.end = -1,
.flags IORESOURCE_MEM,

};
EXPORT_SYMBOL (iomem_resource) ;

TODO EXPORT SYMBOL

iomem_resource defines root addresses range for io memory with PCI mem name
and IORESOURCE_MEM (0x00000200) as flags. As i wrote above our current point
is setup the end address of the iomem. We will do it with:

iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;

Here we shift 1 on boot_cpu_data.x86_phys_bits. boot_cpu_data is
cpuinfo_x86 structure which we filled during execution of the early_cpu_init.
As you can understand from the name of the x86_phys_bits field, it presents
maximum bits amount of the maximum physical address in the system. Note
also that iomem_resource is passed to the EXPORT_SYMBOL macro. This macro
exports the given symbol (iomem_resource in our case) for dynamic linking or
in other words it makes a symbol accessible to dynamically loaded modules.

After we set the end address of the root iomem resource address range, as I wrote
above the next step will be setup of the memory map. It will be produced with
the call of the setup_ memory_map function:

void __init setup_memory_map(void)

{
char *who;
who = x86_init.resources.memory_setup();
memcpy (4e820_saved, &e820, sizeof (struct e820map));
printk (KERN_INFO "e820: BIOS-provided physical RAM map:\n");
e820_print_map (who) ;
}

First of all we call look here the call of the x86_init.resources.memory_setup.
x86_1init is a x86_init_ops structure which presents platform specific setup
functions as resources initialization, pci initialization and etc. .. initialization of
the x86_init is in the arch/x86/kernel/x86_init.c. I will not give here the full
description because it is very long, but only one part which interests us for now:

struct x86_init_ops x86_init __initdata = {
.resources = {
.probe_roms
.reserve_resources
.memory_setup

probe_roms,
reserve_standard_io_resources,
default_machine_specific_memory_setup,
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As we can see here memry_setup field is default_machine_specific_memory_setup
where we get the number of the €820 entries which we collected in the boot time,
sanitize the BIOS €820 map and fill e820map structure with the memory regions.

As all regions are collected, print of all regions with printk. You can find this
print if you execute dmesg command and you can see something like this:

[ 0.000000] e€820: BIOS-provided physical RAM map:

[ 0.000000] BIOS-e820: [mem 0x0000000000000000-0x000000000009d7ff] usable

[ 0.000000] BIOS-e820: [mem 0x000000000009d800-0x000000000009ffff] reserved
[ 0.000000] BIOS-e820: [mem 0x00000000000e0000-0x00000000000fffff] reserved
[ 0.000000] BIOS-€820: [mem 0x0000000000100000-0x00000000be825fff] usable

[ 0.000000] BIOS-€820: [mem 0x00000000be826000-0x00000000be82cfff] ACPI NVS
[ 0.000000] BIDS-e820: [mem 0x00000000be82d000-0x00000000bf744fff] usable

[ 0.000000] BIOS-e820: [mem 0x00000000bf745000-0x00000000bfff4fff] reserved
[ 0.000000] BIOS-e820: [mem 0x00000000bfff5000-0x00000000dc041fff] usable

[ 0.000000] BIDS-e820: [mem 0x00000000dc042000-0x00000000dc0d2fff] reserved
[ 0.000000] BIOS-€820: [mem 0x00000000dc0d3000-0x00000000dc138fff] usable

[ 0.000000] BIOS-e820: [mem 0x00000000dc139000-0x00000000dc27dfff] ACPI NVS
[ 0.000000] BIOS-e820: [mem 0x00000000dc27e000-0x00000000deffefff] reserved
[ 0.000000] BIOS-e820: [mem 0x00000000defff000-0x00000000deffffff] usable

Copying of the BIOS Enhanced Disk Device information

The next two steps is parsing of the setup_data with parse_setup_data func-
tion and copying BIOS EDD to the safe place. setup_data is a field from the
kernel boot header and as we can read from the x86 boot protocol:

Field name: setup_data
Type: write (special)
Offset/size: 0x250/8
Protocol: 2.09+

The 64-bit physical pointer to NULL terminated single linked list of
struct setup_data. This is used to define a more extensible boot
parameters passing mechanism.

It used for storing setup information for different types as device tree blob, EFI
setup data and etc... In the second step we copy BIOS EDD information from
the boot_params structure that we collected in the arch/x86/boot/edd.c to the
edd structure:
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static inline void __init copy_edd(void)

{
memcpy (edd .mbr_signature, boot_params.edd_mbr_sig_buffer,
sizeof (edd.mbr_signature));
memcpy (edd.edd_info, boot_params.eddbuf, sizeof (edd.edd_info));
edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
edd.edd_info_nr = boot_params.eddbuf_entries;
}

Memory descriptor initialization

The next step is initialization of the memory descriptor of the init process. As
you already can know every process has its own address space. This address space
presented with special data structure which called memory descriptor. Directly
in the linux kernel source code memory descriptor presented with mm_struct
structure. mm_struct contains many different fields related with the process
address space as start/end address of the kernel code/data, start/end of the
brk, number of memory areas, list of memory areas and etc... This structure
defined in the include/linux/mm__types.h. As every process has its own memory
descriptor, task_struct structure contains it in the mm and active_mm field.
And our first init process has it too. You can remember that we saw the part
of initialization of the init task_struct with INIT_TASK macro in the previous
part:

#define INIT_TASK(tsk) \
{

.mm = NULL, \
.active_mm = &init_mm, \

3

mm points to the process address space and active_mm points to the active
address space if process has no address space such as kernel threads (more about
it you can read in the documentation). Now we fill memory descriptor of the
initial process:

init_mm.start_code = (unsigned long) _text;
init_mm.end_code = (unsigned long) _etext;
init_mm.end_data = (unsigned long) _edata;
init_mm.brk = _brk_end;

with the kernel’s text, data and brk. init_mm is the memory descriptor of the
initial process and defined as:

69


https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/include/linux/mm_types.h
http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-4.html
https://www.kernel.org/doc/Documentation/vm/active_mm.txt

struct mm_struct init_mm = {

.mm_rb = RB_ROOT,

.pgd = swapper_pg_dir,

.mm_users = ATOMIC_INIT(2),

.mm_count = ATOMIC_INIT(1),

.mmap_sem = __RWSEM_INITIALIZER(init_mm.mmap_sem),
.page_table_lock = __SPIN_LOCK_UNLOCKED(init_mm.page_table_lock),
.mmlist = LIST_HEAD_INIT(init_mm.mmlist),

INIT _MM_CONTEXT(init_mm)
};

where mm_rb is a red-black tree of the virtual memory areas, pgd is a pointer to
the page global directory, mm_users is address space users, mm_count is primary
usage counter and mmap_sem is memory area semaphore. After we setup memory
descriptor of the initial process, next step is initialization of the Intel Memory
Protection Extensions with mpx_mm_init. The next step is initialization of the
code/data/bss resources with:

code_resource.start = __pa_symbol(_text);
code_resource.end = __pa_symbol(_etext)-1;
data_resource.start = __pa_symbol(_etext);
data_resource.end = __pa_symbol(_edata)-1;
bss_resource.start = __pa_symbol(__bss_start);
bss_resource.end = __pa_symbol(__bss_stop)-1;

We already know a little about resource structure (read above). Here we fills
code/data/bss resources with their physical addresses. You can see it in the
/proc/iomem:

00100000-be825fff : System RAM
01000000-015bb392 : Kernel code
015bb393-01930c3f : Kernel data
01a11000-01ac3fff : Kernel bss

All of these structures are defined in the arch/x86/kernel/setup.c and look like
typical resource initialization:

static struct resource code_resource = {

.name = "Kernel code",

.start = 0,

.end =0,

.flags = IORESOURCE_BUSY | IORESOURCE_MEM

};

The last step which we will cover in this part will be NX configuration. NX-bit
or no execute bit is 63-bit in the page directory entry which controls the ability
to execute code from all physical pages mapped by the table entry. This bit can
only be used/set when the no-execute page-protection mechanism is enabled
by the setting EFER.NXE to 1. In the x86_configure_nx function we check that
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CPU has support of NX-bit and it does not disabled. After the check we fill
__supported_pte_mask depend on it:

void x86_configure_nx(void)

{
if (cpu_has_nx && !disable_nx)
__supported_pte_mask |= _PAGE_NX;
else
__supported_pte_mask &= ~_PAGE_NX;
}
Conclusion

It is the end of the fifth part about linux kernel initialization process. In this
part we continued to dive in the setup_arch function which makes initialization
of architecture-specific stuff. It was long part, but we have not finished with it.
As i already wrote, the setup_arch is big function, and I am really not sure that
we will cover all of it even in the next part. There were some new interesting
concepts in this part like Fix-mapped addresses, ioremap and etc... Don’t worry
if they are unclear for you. There is a special part about these concepts - Linux
kernel memory management Part 2.. In the next part we will continue with
the initialization of the architecture-specific stuff and will see parsing of the
early kernel parameters, early dump of the pci devices, direct Media Interface
scanning and many many more.

If you have any questions or suggestions write me a comment or ping me at
twitter.

Please note that English is not my first language, And I am really
sorry for any inconvenience. If you find any mistakes please send me
PR to linux-insides.
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e PDF. dwarf4 specification
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e Previous part
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Kernel initialization. Part 6.

Architecture-specific initialization, again. ..

In the previous part we saw architecture-specific (x86_64 in our case) initializa-
tion stuff from the arch/x86/kernel/setup.c and finished on x86_configure_nx
function which sets the _PAGE_NX flag depends on support of NX bit. As I wrote
before setup_arch function and start_kernel are very big, so in this and in
the next part we will continue to learn about architecture-specific initialization
process. The next function after x86_configure_nx is parse_early_param.
This function is defined in the init/main.c and as you can understand from its
name, this function parses kernel command line and setups different services
depends on the given parameters (all kernel command line parameters you can
find are in the Documentation/kernel-parameters.txt). You may remember
how we setup earlyprintk in the earliest part. On the early stage we looked
for kernel parameters and their value with the cmdline_find_option function
and __cmdline_find_option, __cmdline_find_option_bool helpers from the
arch/x86/boot/cmdline.c. There we're in the generic kernel part which does not
depend on architecture and here we use another approach. If you are reading
linux kernel source code, you already note calls like this:

early_param("gbpages", parse_direct_gbpages_on);
early_param macro takes two parameters:

o command line parameter name;
o function which will be called if given parameter is passed.

and defined as:

#define early_param(str, fn) \
__setup_param(str, fn, fn, 1)

in the include/linux/init.h. As you can see early_param macro just makes call
of the __setup_param macro:

#define __setup_param(str, unique_id, fn, early) \

static const char __setup_str_##unique_id[] __initconst \
__aligned(1) = str; \

static struct obs_kernel_param __setup_##unique_id \

__used __section(.init.setup) \

__attribute__((aligned((sizeof (long))))) \

= { __setup_str_##unique_id, fn, early }

This macro defines __setup_str_*_id variable (where * depends on given
function name) and assigns it to the given command line parameter name. In
the next line we can see definition of the __setup_x variable which type is
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obs_kernel_param and its initialization. obs_kernel_param structure defined
as:

struct obs_kernel_param {
const char *str;
int (*setup_func) (char *);
int early;

};
and contains three fields:

e name of the kernel parameter;
o function which setups something depend on parameter;
o field determines is parameter early (1) or not (0).

Note that __set_param macro defines with __section(.init.setup) attribute.
It means that all __setup_str_* will be placed in the .init.setup section,
moreover, as we can see in the include/asm-generic/vmlinux.lds.h, they will be
placed between __setup_start and __setup_end:

#define INIT_SETUP(initsetup_align)
. = ALIGN(initsetup_align);
VMLINUX_SYMBOL(__setup_start) = .;
x(.init.setup)
VMLINUX_SYMBOL(__setup_end) = .;

s

Now we know how parameters are defined, let’s back to the parse_early_param
implementation:

void __init parse_early_param(void)
{
static int done __initdata;
static char tmp_cmdline [COMMAND_LINE_SIZE] __initdata;

if (done)
return;

/* ALl fall through to do_early_param. */
strlcpy(tmp_cmdline, boot_command_line, COMMAND_LINE_SIZE);
parse_early_options(tmp_cmdline);

done = 1;

}

The parse_early_param function defines two static variables. First done check
that parse_early_param already called and the second is temporary storage
for kernel command line. After this we copy boot_command_line to the tempo-
rary command line which we just defined and call the parse_early_options
function from the same source code main.c file. parse_early_options calls
the parse_args function from the kernel/params.c where parse_args parses
given command line and calls do_early_param function. This function goes
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from the __setup_start to __setup_end, and calls the function from the
obs_kernel_param if a parameter is early. After this all services which are
depend on early command line parameters were setup and the next call after the
parse_early_param is x86_report_nx. As I wrote in the beginning of this part,
we already set NX-bit with the x86_configure_nx. The next x86_report_nx
function from the arch/x86/mm/setup nx.c just prints information about the
NX. Note that we call x86_report_nx not right after the x86_configure_nx,
but after the call of the parse_early_param. The answer is simple: we call it
after the parse_early_param because the kernel support noexec parameter:

noexec [x86]
On X86-32 available only on PAE configured kernels.
noexec=on: enable non-executable mappings (default)
noexec=off: disable non-executable mappings

We can see it in the booting time:

http://0i62.tinypic.com/swwxhy. jpg

Figure 1: NX

After this we can see call of the:
memblock_x86_reserve_range_setup_data();

function. This function is defined in the same arch/x86/kernel/setup.c source
code file and remaps memory for the setup_data and reserved memory block
for the setup_data (more about setup_data you can read in the previous part
and about ioremap and memblock you can read in the Linux kernel memory
management).

In the next step we can see following conditional statement:

if (acpi_mps_check()) {
#ifdef CONFIG_X86 LOCAL_APIC
disable_apic = 1;
#endif
setup_clear_cpu_cap(X86_FEATURE_APIC);
}

The first acpi_mps_check function from the arch/x86/kernel/acpi/boot.c de-
pends on CONFIG_X86_LOCAL_APIC and CONFIG_x86_MPPARSE configuration op-
tions:
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int __init acpi_mps_check(void)
{
#if defined (CONFIG_X86_LOCAL_APIC) && 'defined(CONFIG_X86_MPPARSE)
/* mptable code is not butlt-in*/
if (acpi_disabled || acpi_noirq) {
printk (KERN_WARNING "MPS support code is not built-in.\n"
"Using acpi=off or acpi=noirq or pci=noacpi "
"may have problem\n");
return 1;

#endif
return O;

3

It checks the built-in MPS or MultiProcessor Specification table. If
CONFIG_X86_LOCAL_APIC is set and CONFIG_x86_MPPAARSE is not set,
acpi_mps_check prints warning message if the one of the command line options:
acpi=off, acpi=noirq or pci=noacpi passed to the kernel. If acpi_mps_check
returns 1 it means that we disable local APIC and clear X86_FEATURE_APIC bit
in the of the current CPU with the setup_clear_cpu_cap macro. (more about
CPU mask you can read in the CPU masks).

Early PCI dump

In the next step we make a dump of the PCI devices with the following code:

#ifdef CONFIG_PCI
if (pci_early_dump_regs)
early_dump_pci_devices();
#endif

pci_early_dump_regs variable defined in the arch/x86/pci/common.c and its
value depends on the kernel command line parameter: pci=earlydump. We can
find definition of this parameter in the drivers/pci/pci.c:

early_param('"pci", pci_setup);

pci_setup function gets the string after the pci= and analyzes it. This function
calls pcibios_setup which defined as __weak in the drivers/pci/pci.c and every
architecture defines the same function which overrides __weak analog. For ex-
ample x86_64 architecture-dependent version is in the arch/x86,/pci/common.c:

char *__init pcibios_setup(char *str) {

} else if (!strcmp(str, "earlydump")) {
pci_early_dump_regs = 1;
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return NULL;

}

So, if CONFIG_PCI option is set and we passed pci=earlydump option to the ker-
nel command line, next function which will be called - early_dump_pci_devices
from the arch/x86/pci/early.c. This function checks noearly pci parameter
with:

if (learly_pci_allowed())
return;

and returns if it was passed. Each PCI domain can host up to 256 buses and
each bus hosts up to 32 devices. So, we goes in a loop:

for (bus = 0; bus < 256; bus++) {
for (slot = 0; slot < 32; slot++) {
for (func = 0; func < 8; func++) {

}
and read the pci config with the read_pci_config function.

That’s all. We will not go deep in the pci details, but will see more details in
the special Drivers/PCI part.

Finish with memory parsing

After the early_dump_pci_devices, there are a couple of function related with
available memory and e820 which we collected in the First steps in the kernel
setup part:

/* update the e820_saved too */
e820_reserve_setup_data();
finish_e820_parsing();

e820_add_kernel_range() ;
trim_bios_range(void);
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max_pfn = e820_end_of_ram_pfn();
early_reserve_e820_mpc_new();

Let’s look on it. As you can see the first function is e820_reserve_setup_data.
This function does almost the same as memblock_x86_reserve_range_setup_data
which we saw above, but it also calls €820_update_range which adds new
regions to the e820map with the given type which is E820_RESERVED_KERN in
our case. The next function is finish_e820_parsing which sanitizes e820map
with the sanitize_e820_map function. Besides this two functions we can see

a couple of functions related to the e820. You can see it in the listing above.
e820_add_kernel_range function takes the physical address of the kernel start
and end:

u64 start = __pa_symbol(_text);
u64 size = __pa_symbol(_end) - start;

checks that .text .data and .bss marked as ES20RAM in the e820map and prints
the warning message if not. The next function trm_bios_range update first
4096 bytes in e820Map as E820_RESERVED and sanitizes it again with the call of
the sanitize_e820_map. After this we get the last page frame number with the
call of the e820_end_of _ram_pfn function. Every memory page has a unique
number - Page frame number and e820_end_of_ram_pfn function returns the
maximum with the call of the e820_end_pfn:

unsigned long __init e820_end_of_ram_pfn(void)
{

return e820_end_pfn(MAX_ARCH_PFN) ;
}

where e820_end_pfn takes maximum page frame number on the certain ar-
chitecture (MAX_ARCH_PFN is 0x400000000 for x86_64). In the €820_end_pfn
we go through the all €820 slots and check that €820 entry has E820_RAM or
E820_PRAM type because we calculate page frame numbers only for these types,
gets the base address and end address of the page frame number for the current
€820 entry and makes some checks for these addresses:

for (i = 0; i < e820.nr_map; it++) {
struct e820entry *ei = &e820.map[i];
unsigned long start_pfn;
unsigned long end_pfn;

if (ei->type != E820_RAM && ei->type != E820_PRAM)
continue;

start_pfn = ei->addr >> PAGE_SHIFT;
end_pfn = (ei->addr + ei->size) >> PAGE_SHIFT;

if (start_pfn >= limit_pfn)
continue;
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if (end_pfn > limit_pfn) {
last_pfn = limit_pfn;
break;

}

if (end_pfn > last_pfn)
last_pfn = end_pfn;

if (last_pfn > max_arch_pfn)
last_pfn = max_arch_pfn;

printk (KERN_INFO "e820: last_pfn = %#lx max_arch_pfn = 7#lx\n",
last_pfn, max_arch_pfn);
return last_pfn;

After this we check that last_pfn which we got in the loop is not greater that
maximum page frame number for the certain architecture (x86_64 in our case),
print information about last page frame number and return it. We can see the
last_pfn in the dmesg output:

[ 0.000000] e820: last_pfn = 0x41f000 max_arch_pfn = 0x400000000

After this, as we have calculated the biggest page frame number, we calculate
max_low_pfn which is the biggest page frame number in the low memory or
below first 4 gigabytes. If installed more than 4 gigabytes of RAM, max_low_pfn
will be result of the e820_end_of_low_ram_pfn function which does the same
e820_end_of_ram_pfn but with 4 gigabytes limit, in other way max_low_pfn
will be the same as max_pfn:

if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
max_low_pfn = e820_end_of_low_ram_pfn();
else
max_low_pfn = max_pfn;

high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;

Next we calculate high_memory (defines the upper bound on direct map memory)
with __va macro which returns a virtual address by the given physical memory.

DMI scanning
The next step after manipulations with different memory regions and €820 slots

is collecting information about computer. We will get all information with the
Desktop Management Interface and following functions:
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dmi_scan_machine();
dmi_memdev_walk();

First is dmi_scan_machine defined in the drivers/firmware/dmi_scan.c. This
function goes through the System Management BIOS structures and extracts
information. There are two ways specified to gain access to the SMBIOS table: get
the pointer to the SMBIOS table from the EFT’s configuration table and scanning
the physical memory between 0xFO000 and 0x10000 addresses. Let’s look on
the second approach. dmi_scan_machine function remaps memory between
0x£0000 and 0x10000 with the dmi_early_remap which just expands to the
early_ioremap:

void __init dmi_scan_machine(void)
{

char __iomem *p, *q;

char buf[32];

p = dmi_early_remap(0xF0000, 0x10000);
if (p == NULL)
goto error;

and iterates over all DMI header address and find search _SM_ string:

memset (buf, 0, 16);
for (q = p; q < p + 0x10000; q += 16) {
memcpy_fromio(buf + 16, q, 16);
if (!dmi_smbios3_present(buf) || !dmi_present(buf)) {
dmi_available = 1;
dmi_early_unmap(p, 0x10000);
goto out;
}
memcpy (buf, buf + 16, 16);
}

_SM_ string must be between 000F0000h and O0xOOOFFFFF. Here we copy 16
bytes to the buf with memcpy_fromio which is the same memcpy and execute
dmi_smbios3_present and dmi_present on the buffer. These functions check
that first 4 bytes is _SM_ string, get SMBIOS version and gets _DMI_ attributes as
DMI structure table length, table address and etc... After one of these functions
finish, you will see the result of it in the dmesg output:

[ 0.000000] SMBIOS 2.7 present.
[ 0.000000] DMI: Gigabyte Technology Co., Ltd. Z97X-UD5H-BK/Z97X-UD5SH-BK, BIOS F6 06/17/:

In the end of the dmi_scan_machine, we unmap the previously remapped mem-
ory:

dmi_early_unmap(p, 0x10000);
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The second function is - dmi_memdev_walk. As you can understand it goes over
memory devices. Let’s look on it:

void __init dmi_memdev_walk(void)

{
if (!'dmi_available)
return;
if (dmi_walk_early(count_mem_devices) == 0 &% dmi_memdev_nr) {
dmi_memdev = dmi_alloc(sizeof (*dmi_memdev) * dmi_memdev_nr) ;
if (dmi_memdev)
dmi_walk_early(save_mem_devices);
}
}

It checks that DMI available (we got it in the previous function -
dmi_scan_machine) and collects information about memory devices with
dmi_walk_early and dmi_alloc which defined as:

#ifdef CONFIG_DMI
RESERVE_BRK (dmi_alloc, 65536);
#endif

RESERVE_BRK defined in the arch/x86/include/asm/setup.h and reserves space
with given size in the brk section.

init_ hypervisor_ platform();
x86__init.resources.probe_ roms();
in-
sert__resource(&iomem__resource,
&code_resource); in-
sert_ resource(&iomem__resource,
&data_ resource); in-
sert_ resource(&iomem _ resource,
&bss__resource);
early_gart_iommu_ check();
SMP config

The next step is parsing of the SMP configuration. We do it with the call of the
find_smp_config function which just calls function:

static inline void find_smp_config(void)
{

x86_init.mpparse.find_smp_config();

}

inside. x86_init.mpparse.find_smp_configis the default_find_smp_config
function from the arch/x86/kernel/mpparse.c. In the default_find_smp_config
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function we are scanning a couple of memory regions for SMP config and return
if they are found:

if (smp_scan_config(0x0, 0x400) ||
smp_scan_config(639 * 0x400, 0x400) ||
smp_scan_config(0xF0000, 0x10000))
return;

First of all smp_scan_config function defines a couple of variables:

unsigned int *bp = phys_to_virt(base);
struct mpf_intel *mpf;

First is virtual address of the memory region where we will scan SMP config,
second is the pointer to the mpf_intel structure. Let’s try to understand what
is it mpf_intel. All information stores in the multiprocessor configuration data
structure. mpf_intel presents this structure and looks:

struct mpf_intel {
char signature[4];
unsigned int physptr;
unsigned char length;
unsigned char specification;
unsigned char checksum;
unsigned char featurel;
unsigned char feature2;
unsigned char feature3;
unsigned char feature4;
unsigned char feature5;

};

As we can read in the documentation - one of the main functions of the system
BIOS is to construct the MP floating pointer structure and the MP config-
uration table. And operating system must have access to this information
about the multiprocessor configuration and mpf_intel stores the physical ad-
dress (look at second parameter) of the multiprocessor configuration table. So,
smp_scan_config going in a loop through the given memory range and tries to
find MP floating pointer structure there. It checks that current byte points
to the SMP signature, checks checksum, checks if mpf->specification is 1 or
4(it must be 1 or 4 by specification) in the loop:

while (length > 0) {

if ((*bp == SMP_MAGIC_IDENT) &&
(mpf->length == 1) &&
'mpf_checksum((unsigned char *)bp, 16) &&
((mpf->specification == 1)
|| (mpf->specification == 4))) {

mem = virt_to_phys (mpf) ;
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memblock_reserve(mem, sizeof (xmpf));
if (mpf->physptr)
smp_reserve_memory (mpf) ;

}

reserves given memory block if search is successful with memblock_reserve and
reserves physical address of the multiprocessor configuration table. You can find
documentation about this in the - MultiProcessor Specification. You can read
More details in the special part about SMP.

Additional early memory initialization routines

In the next step of the setup_arch we can see the call of the early_alloc_pgt_buf
function which allocates the page table buffer for early stage. The page table
buffer will be placed in the brk area. Let’s look on its implementation:

void __init early_alloc_pgt_buf (void)

{
unsigned long tables = INIT_PGT_BUF_SIZE;
phys_addr_t base;

base = __pa(extend_brk(tables, PAGE_SIZE));
pgt_buf_start = base >> PAGE_SHIFT;

pgt_buf_end = pgt_buf_start;
pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);

3

First of all it get the size of the page table buffer, it will be INIT_PGT_BUF_SIZE
which is (6 * PAGE_SIZE) in the current linux kernel 4.0. As we got the size of
the page table buffer, we call extend_brk function with two parameters: size
and align. As you can understand from its name, this function extends the brk
area. As we can see in the linux kernel linker script brk is in memory right after
the BSS:

. = ALIGN(PAGE_SIZE);
.brk : AT(ADDR(.brk) - LOAD_OFFSET) {

__brk_base = .;

. += 64 x 1024; /* 64k alignment slop space */
*(.brk_reservation) /* areas brk users have reserved */
__brk_limit = .;

}
Or we can find it with readelf util:

After that we got physical address of the new brk with the __pa macro, we
calculate the base address and the end of the page table buffer. In the next step
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Figure 2: brk area

as we got page table buffer, we reserve memory block for the brk area with the
reserve_brk function:

static void __init reserve_brk(void)

{
if (_brk_end > _brk_start)
memblock_reserve(__pa_symbol(_brk_start),
_brk_end - _brk_start);
_brk_start = 0;
}

Note that in the end of the reserve_brk, we set brk_start to zero, because
after this we will not allocate it anymore. The next step after reserving memory
block for the brk, we need to unmap out-of-range memory areas in the kernel
mapping with the cleanup_highmap function. Remember that kernel mapping
is __START_KERNEL_map and _end - _text or level2_kernel_pgt maps the
kernel _text, data and bss. In the start of the clean_high_map we define these
parameters:

unsigned long vaddr = __START_KERNEL_map;

unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
pmd_t *pmd = level2_kernel_pgt;

pmd_t *last_pmd = pmd + PTRS_PER_PMD;

Now, as we defined start and end of the kernel mapping, we go in the loop
through the all kernel page middle directory entries and clean entries which are
not between _text and end:

for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
if (pmd_none (*pmd))
continue;
if (vaddr < (unsigned long) _text || vaddr > end)
set_pmd(pmd, __pmd(0));
}

After this we set the limit for the memblock allocation with the memblock_set_current_limit
function (read more about memblock you can in the Linux kernel memory man-
agement Part 2), it will be ISA_END_ADDRESS or 0x100000 and fill the memblock
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information according to €820 with the call of the memblock_x86_fill function.
You can see the result of this function in the kernel initialization time:

MEMBLOCK configuration:

memory size = 0x1fff7ec00 reserved size = 0x1e30000

memory.cnt = 0x3

memory [0x0] [0x00000000001000-0x0000000009ef£ff], 0x9e000 bytes flags: 0x0
memory [0x1] [0x00000000100000-0x000000bffdffff], Oxbfee0000 bytes flags: 0x0
memory [0x2] [0x00000100000000-0x0000023ff£ffff], 0x140000000 bytes flags: 0x0
reserved.cnt = 0x3

reserved[0x0] [0x0000000009£000-0x000000000ffff£f], 0x61000 bytes flags: 0xO
reserved[0x1] [0x00000001000000-0x00000001a57£ff£f], 0xab8000 bytes flags: 0x0
reserved[0x2] [0x0000007ec89000-0x0000007ffff£fff], 0x1377000 bytes flags: 0x0

The rest functions after the memblock_x86_£fill are: early_reserve_e820_mpc_new
allocates additional slots in the e820map for MultiProcessor Specification table,
reserve_real_mode - reserves low memory from 0x0 to 1 megabyte for the tram-
poline to the real mode (for rebooting, etc.), trim_platform_memory_ranges
- trims certain memory regions started from 0x20050000, 0x20110000, etc.
these regions must be excluded because Sandy Bridge has problems with these
regions, trim_low_memory_range reserves the first 4 kilobyte page in memblock,
init_mem_mapping function reconstructs direct memory mapping and setups the
direct mapping of the physical memory at PAGE_OFFSET, early_trap_pf_init
setups #PF handler (we will look on it in the chapter about interrupts) and
setup_real_mode function setups trampoline to the real mode code.

That’s all. You can note that this part will not cover all functions which are in
the setup_arch (like early_gart_iommu_check, mtrr initialization, etc.). As I
already wrote many times, setup_arch is big, and linux kernel is big. That’s
why I can’t cover every line in the linux kernel. I don’t think that we missed
something important, but you can say something like: each line of code is
important. Yes, it’s true, but I missed them anyway, because I think that it
is not realistic to cover full linux kernel. Anyway we will often return to the
idea that we have already seen, and if something is unfamiliar, we will cover this
theme.

Conclusion

It is the end of the sixth part about linux kernel initialization process. In this
part we continued to dive in the setup_arch function again and it was long
part, but we are not finished with it. Yes, setup_arch is big, hope that next
part will be the last part about this function.

If you have any questions or suggestions write me a comment or ping me at
twitter.

Please note that English is not my first language, And I am really
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sorry for any inconvenience. If you find any mistakes please send me
PR to linux-insides.

Links

o MultiProcessor Specification

e NX bit

¢ Documentation/kernel-parameters.txt
« APIC

e CPU masks

o Linux kernel memory management
« PCI

o 820

e System Management BIOS

¢ System Management BIOS

o EFI

« SMP

e MultiProcessor Specification

« BSS

e SMBIOS specification

e Previous part

Kernel initialization. Part 7.

The End of the architecture-specific initialization,
almost. ..

This is the seventh part of the Linux Kernel initialization process which covers
insides of the setup_arch function from the arch/x86 /kernel/setup.c. As you can
know from the previous parts, the setup_arch function does some architecture-
specific (in our case it is x86_64) initialization stuff like reserving memory for
kernel code/data/bss, early scanning of the Desktop Management Interface, early
dump of the PCI device and many many more. If you have read the previous
part, you can remember that we’ve finished it at the setup_real_mode function.
In the next step, as we set limit of the memblock to the all mapped pages, we
can see the call of the setup_log_buf function from the kernel/printk/printk.c.

The setup_log_buf function setups kernel cyclic buffer and its length depends
on the CONFIG_LOG_BUF_SHIFT configuration option. As we can read from the
documentation of the CONFIG_LOG_BUF_SHIFT it can be between 12 and 21. In
the insides, buffer defined as array of chars:
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#define _ LOG_BUF LEN (1 << CONFIG_LOG_BUF_SHIFT)
static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
static char *log_buf = __log_buf;

Now let’s look on the implementation of the setup_log_buf function. It starts
with check that current buffer is empty (It must be empty, because we just setup
it) and another check that it is early setup. If setup of the kernel log buffer
is not early, we call the log_buf_add_cpu function which increase size of the
buffer for every CPU:

if (log_buf != __log_buf)
return;

if (learly && 'mew_log_buf_len)
log_buf_add_cpu(Q);

We will not research log_buf_add_cpu function, because as you can see in the
setup_arch, we call setup_log_buf as:

setup_log_buf(1);

where 1 means that it is early setup. In the next step we check new_log_buf_len
variable which is updated length of the kernel log buffer and allocate new space
for the buffer with the memblock_virt_alloc function for it, or just return.

As kernel log buffer is ready, the next function is reserve_initrd. You can
remember that we already called the early_reserve_initrd function in the
fourth part of the Kernel initialization. Now, as we reconstructed direct memory
mapping in the init_mem_mapping function, we need to move initrd into directly
mapped memory. The reserve_initrd function starts from the definition of the
base address and end address of the initrd and check that initrd is provided
by a bootloader. All the same as what we saw in the early_reserve_initrd.
But instead of the reserving place in the memblock area with the call of the
memblock_reserve function, we get the mapped size of the direct memory area
and check that the size of the initrd is not greater than this area with:

mapped_size = memblock_mem_size(max_pfn_mapped) ;
if (ramdisk_size >= (mapped_size>>1))
panic("initrd too large to handle, "
"disabling initrd (%11ld needed, %11ld available)\n",
ramdisk_size, mapped_size>>1);

You can see here that we call memblock_mem_size function and pass the
max_pfn_mapped to it, where max_pfn_mapped contains the highest direct
mapped page frame number. If you do not remember what is page frame
number, explanation is simple: First 12 bits of the virtual address represent
offset in the physical page or page frame. If we right-shift out 12 bits of the
virtual address, we’ll discard offset part and will get Page Frame Number. In the
memblock_mem_size we go through the all memblock mem (not reserved) regions
and calculates size of the mapped pages and return it to the mapped_size
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variable (see code above). As we got amount of the direct mapped memory,
we check that size of the initrd is not greater than mapped pages. If it is
greater we just call panic which halts the system and prints famous Kernel
panic message. In the next step we print information about the initrd size.
We can see the result of this in the dmesg output:

[0.000000] RAMDISK: [mem 0x36d20000-0x37687fff]

and relocate initrd to the direct mapping area with the relocate_initrd
function. In the start of the relocate_initrd function we try to find a free
area with the memblock_find_in_range function:

relocated_ramdisk = memblock_find_in_range (0, PFN_PHYS(max_pfn_mapped), area_size, PAGE_SIZI

if (!'relocated_ramdisk)
panic("Cannot find place for new RAMDISK of size %11d\n",
ramdisk_size);

The memblock_find_in_range function tries to find a free area in a given range,
in our case from 0 to the maximum mapped physical address and size must
equal to the aligned size of the initrd. If we didn’t find a area with the given
size, we call panic again. If all is good, we start to relocated RAM disk to the
down of the directly mapped memory in the next step.

In the end of the reserve_initrd function, we free memblock memory which
occupied by the ramdisk with the call of the:

memblock_free(ramdisk_image, ramdisk_end - ramdisk_image) ;

After we relocated initrd ramdisk image, the next function is vsmp_init from
the arch/x86/kernel/vsmp_ 64.c. This function initializes support of the ScaleMP
vSMP. As I already wrote in the previous parts, this chapter will not cover non-
related x86_64 initialization parts (for example as the current or ACPI, etc.). So
we will skip implementation of this for now and will back to it in the part which
cover techniques of parallel computing.

The next function is io_delay_init from the arch/x86/kernel/io_delay.c. This
function allows to override default I/O delay 0x80 port. We already saw I/0O
delay in the Last preparation before transition into protected mode, now let’s
look on the io_delay_init implementation:

void __init io_delay_init(void)
{
if ('io_delay_override)
dmi_check_system(io_delay_Oxed_port_dmi_table);
}

This function check io_delay_override variable and overrides I/O delay port
if io_delay_override is set. We can set io_delay_override variably by
passing io_delay option to the kernel command line. As we can read from the
Documentation/kernel-parameters.txt, io_delay option is:
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io_delay=  [X86] I/0 delay method
0x80
Standard port 0x80 based delay
Oxed
Alternate port Oxed based delay (needed on some systems)
udelay
Simple two microseconds delay
none
No delay

We can see io_delay command line parameter setup with the early_param
macro in the arch/x86/kernel/io_delay.c

early_param("io_delay", io_delay_param);

More about early_param you can read in the previous part. So the
io_delay_param function which setups io_delay_override variable will
be called in the do_early param function. io_delay_param function gets
the argument of the io_delay kernel command line parameter and sets
io_delay_type depends on it:

static int __init io_delay_param(char *s)

{
if (!s)
return -EINVAL;
if (!strcmp(s, "0x80"))
io_delay_type = CONFIG_IO_DELAY_TYPE_0X80;
else if (!strcmp(s, "Oxed"))
io_delay_type = CONFIG_IO_DELAY_TYPE_OXED;
else if (!strcmp(s, "udelay"))
io_delay_type = CONFIG_IO_DELAY_TYPE_UDELAY;
else if (!strcmp(s, "none"))
io_delay_type = CONFIG_IO_DELAY_TYPE_NONE;
else
return -EINVAL;
io_delay_override = 1;
return 0O;
}

The next functions are acpi_boot_table_init, early_acpi_boot_init and
initmem_init after the io_delay_init, but as I wrote above we will not cover
ACPI related stuff in this Linux Kernel initialization process chapter.
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Allocate area for DM A

In the next step we need to allocate area for the Direct memory access with the
dma_contiguous_reserve function which is defined in the drivers/base/dma-
contiguous.c. DMA is a special mode when devices communicate with memory with-
out CPU. Note that we pass one parameter - max_pfn_mapped << PAGE_SHIFT,
to the dma_contiguous_reserve function and as you can understand from this
expression, this is limit of the reserved memory. Let’s look on the implementation
of this function. It starts from the definition of the following variables:

phys_addr_t selected_size = 0;
phys_addr_t selected_base = 0;
phys_addr_t selected_limit = limit;
bool fixed = false;

where first represents size in bytes of the reserved area, second is base address
of the reserved area, third is end address of the reserved area and the last
fixed parameter shows where to place reserved area. If fixed is 1 we just
reserve area with the memblock_reserve, if it is 0 we allocate space with the
kmemleak_alloc. In the next step we check size_cmdline variable and if it is
not equal to -1 we fill all variables which you can see above with the values from
the cma kernel command line parameter:

if (size_cmdline != -1) {

}

You can find in this source code file definition of the early parameter:
early_param("cma", early_cma);
where cma is:

cma=nn [MG]@[start [MG] [-end [MG]]]
[ARM,X86,KNL]
Sets the size of kernel global memory area for
contiguous memory allocations and optionally the
placement constraint by the physical address range of
memory allocations. A value of O disables CMA
altogether. For more information, see
include/linux/dma-contiguous.h

If we will not pass cma option to the kernel command line, size_cmdline will
be equal to -1. In this way we need to calculate size of the reserved area which
depends on the following kernel configuration options:

e CONFIG_CMA_SIZE_SEL_MBYTES - size in megabytes, default global CMA area,
which is equal to CMA_SIZE_MBYTES * SZ_1Mor CONFIG_CMA_SIZE_MBYTES
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* 1M;
e CONFIG_CMA_SIZE_SEL_PERCENTAGE - percentage of total memory;
e CONFIG_CMA_SIZE_SEL_MIN - use lower value;
e CONFIG_CMA_SIZE_SEL_MAX - use higher value.

As we calculated the size of the reserved area, we reserve area with the call of
the dma_contiguous_reserve_area function which first of all calls:

ret = cma_declare_contiguous(base, size, limit, 0, 0, fixed, res_cma);

function. The cma_declare_contiguous reserves contiguous area from the given
base address with given size. After we reserved area for the DMA, next function is
the memblock_find_dma_reserve. As you can understand from its name, this
function counts the reserved pages in the DMA area. This part will not cover
all details of the CMA and DMA, because they are big. We will see much more
details in the special part in the Linux Kernel Memory management which covers
contiguous memory allocators and areas.

Initialization of the sparse memory

The next step is the call of the function - x86_init.paging.pagetable_init.
If you try to find this function in the linux kernel source code, in the end of your
search, you will see the following macro:

#define native_pagetable_init paging_init

which expands as you can see to the call of the paging_init function from the
arch/x86/mm/init_64.c. The paging_init function initializes sparse memory
and zone sizes. First of all what’s zones and what is it Sparsemem. The
Sparsemen is a special foundation in the linux kernel memory manager which
used to split memory area into different memory banks in the NUMA systems.
Let’s look on the implementation of the paginig_init function:

void __init paging_init(void)

{
sparse_memory_present_with_active_regions (MAX_NUMNODES) ;
sparse_init();

node_clear_state(0, N_MEMORY);
if (N_MEMORY != N_NORMAL_MEMORY)
node_clear_state(0, N_NORMAL_MEMORY) ;

zone_sizes_init();

}

As you can see there is call of the sparse_memory_present_with_active_regions
function which records a memory area for every NUMA node to the array of
the mem_section structure which contains a pointer to the structure of the
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array of struct page. The next sparse_init function allocates non-linear
mem_section and mem_map. In the next step we clear state of the movable
memory nodes and initialize sizes of zones. Every NUMA node is divided into a
number of pieces which are called - zones. So, zone_sizes_init function from
the arch/x86/mm/init.c initializes size of zones.

Again, this part and next parts do not cover this theme in full details. There
will be special part about NUMA.

vsyscall mapping

The next step after SparseMem initialization is setting of the trampoline_cr4_features
which must contain content of the cr4d Control register. First of all we need to

check that current CPU has support of the cré register and if it has, we save its
content to the trampoline_cr4_features which is storage for cr4 in the real
mode:

if (boot_cpu_data.cpuid_level >= 0) {
mmu_cr4_features = __read_cr4();

if (trampoline_cr4_features)
*trampoline_cr4_features = mmu_cr4_features;

3

The next function which you can see is map_vsyscal from the arch/x86 /kernel/vsyscall_64.c.

This function maps memory space for vsyscalls and depends on CONFIG_X86_VSYSCALL_EMULATION
kernel configuration option. Actually vsyscall is a special segment which

provides fast access to the certain system calls like getcpu, etc. Let’s look on

implementation of this function:

void __init map_vsyscall(void)

{
extern char __vsyscall_page;
unsigned long physaddr_vsyscall = __pa_symbol(&__vsyscall_page);
if (vsyscall_mode != NONE)
__set_fixmap(VSYSCALL_PAGE, physaddr_vsyscall,
vsyscall_mode == NATIVE
? PAGE_KERNEL_VSYSCALL
: PAGE_KERNEL_VVAR) ;
BUILD_BUG_ON((unsigned long)__fix_to_virt(VSYSCALL_PAGE) !=
(unsigned long)VSYSCALL_ADDR) ;
b

In the beginning of the map_vsyscall we can see definition of two variables.
The first is extern variable __vsyscall_page. As a extern variable, it
defined somewhere in other source code file. Actually we can see definition
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of the __vsyscall_page in the arch/x86/kernel/vsyscall _emu_64.S. The

__vsyscall_page symbol points to the aligned calls of the vsyscalls as
gettimeofday, etc.:

.globl __vsyscall_page

.balign PAGE_SIZE, Oxcc

.type __vsyscall_page, Qobject
__vsyscall_page:

mov $__NR_gettimeofday, %rax
syscall
ret

.balign 1024, Oxcc
mov $__NR_time, %rax
syscall

ret

The second variable is physaddr_vsyscall which just stores physical address
of the __vsyscall_page symbol. In the next step we check the vsyscall_mode
variable, and if it is not equal to NONE, it is EMULATE by default:

static enum { EMULATE, NATIVE, NONE } vsyscall_mode = EMULATE;

And after this check we can see the call of the __set_fixmap function which
calls native_set_fixmap with the same parameters:

void native_set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t flags)
{
__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));

}
void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
{
unsigned long address = __fix_to_virt(idx);
if (idx >= __end_of_fixed_addresses) {
BUGQ);
return;
}
set_pte_vaddr(address, pte);
fixmaps_set++;
}

Here we can see that native_set_fixmap makes value of Page Table Entry
from the given physical address (physical address of the __vsyscall_page symbol
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in our case) and calls internal function - __native_set_fixmap. Internal function
gets the virtual address of the given fixed_addresses index (VSYSCALL_PAGE in
our case) and checks that given index is not greater than end of the fix-mapped
addresses. After this we set page table entry with the call of the set_pte_vaddr
function and increase count of the fix-mapped addresses. And in the end of the
map_vsyscall we check that virtual address of the VSYSCALL_PAGE (which is
first index in the fixed_addresses) is not greater than VSYSCALL_ADDR which
is =10UL << 20 or ffffffffff600000 with the BUILD_BUG_ON macro:

BUILD_BUG_ON((unsigned long)__fix_to_virt(VSYSCALL_PAGE) !=
(unsigned long)VSYSCALL_ADDR);

Now vsyscall area is in the fix-mapped area. That’s all about map_vsyscall,
if you do not know anything about fix-mapped addresses, you can read Fix-
Mapped Addresses and ioremap. We will see more about vsyscalls in the
vsyscalls and vdso part.

Getting the SMP configuration

You may remember how we made a search of the SMP configuration in the
previous part. Now we need to get the SMP configuration if we found it. For
this we check smp_found_config variable which we set in the smp_scan_config
function (read about it the previous part) and call the get_smp_config function:

if (smp_found_config)
get_smp_config();

The get_smp_config expands to the x86_init .mpparse.default_get_smp_config
function which is defined in the arch/x86/kernel/mpparse.c. This function
defines a pointer to the multiprocessor floating pointer structure - mpf_intel
(you can read about it in the previous part) and does some checks:

struct mpf_intel *mpf 