Finaly resolve issue #175

This commit is contained in:
Alexander Kuleshov 2016-12-02 23:21:52 +06:00 committed by proninyaroslav
parent 72dfc4167a
commit 3ffab70a2e

View File

@ -350,56 +350,26 @@ DECLARE_PER_CPU(char *, irq_stack_ptr);
DECLARE_PER_CPU(unsigned int, irq_count); DECLARE_PER_CPU(unsigned int, irq_count);
``` ```
The first is the `irq_stack_ptr`. From the variable's name, it is obvious that this is a pointer to the top of the stack. The second - `irq_count` is used to check if a CPU is already on an interrupt stack or not. Initialization of the `irq_stack_ptr` is located in the `setup_per_cpu_areas` function in [arch/x86/kernel/setup_percpu.c](https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup_percpu.c): The first is the `irq_stack_ptr` pointer. From the variable's name, it is obvious that this is a pointer to the top of the stack. The second - `irq_count` is used to check if a CPU is already on an interrupt stack or not. Initialization of the `irq_stack_ptr` is located in the `setup_per_cpu_areas` function in [arch/x86/kernel/setup_percpu.c](https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup_percpu.c) source code file and looks:
```C ```C
void __init setup_per_cpu_areas(void) void __init setup_per_cpu_areas(void)
{ {
...
...
#ifdef CONFIG_X86_64 #ifdef CONFIG_X86_64
for_each_possible_cpu(cpu) { for_each_possible_cpu(cpu) {
... ...
... ...
... ...
per_cpu(irq_stack_ptr, cpu) = per_cpu(irq_stack_ptr, cpu) =
per_cpu(irq_stack_union.irq_stack, cpu) + per_cpu(irq_stack_union.irq_stack, cpu) + IRQ_STACK_SIZE;
IRQ_STACK_SIZE - 64;
... ...
... ...
... ...
#endif #endif
...
...
} }
``` ```
Here we go over all the CPUs one-by-one and setup `irq_stack_ptr`. This turns out to be equal to the top of the interrupt stack minus `64`. Why `64`?TODO [arch/x86/kernel/cpu/common.c](https://github.com/torvalds/linux/blob/master/arch/x86/kernel/cpu/common.c) source code file is following: Here we go over all the CPUs one-by-one and setup `irq_stack_ptr`.
```C
void load_percpu_segment(int cpu)
{
...
...
...
loadsegment(gs, 0);
wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
}
```
and as we already know the `gs` register points to the bottom of the interrupt stack.
```assembly
movl $MSR_GS_BASE,%ecx
movl initial_gs(%rip),%eax
movl initial_gs+4(%rip),%edx
wrmsr
GLOBAL(initial_gs)
.quad INIT_PER_CPU_VAR(irq_stack_union)
```
Here we can see the `wrmsr` instruction which loads the data from `edx:eax` into the [Model specific register](http://en.wikipedia.org/wiki/Model-specific_register) pointed by the `ecx` register. In our case the model specific register is `MSR_GS_BASE` which contains the base address of the memory segment pointed by the `gs` register. `edx:eax` points to the address of the `initial_gs` which is the base address of our `irq_stack_union`.
We already know that `x86_64` has a feature called `Interrupt Stack Table` or `IST` and this feature provides the ability to switch to a new stack for events non-maskable interrupt, double fault etc. There can be up to seven `IST` entries per-cpu. Some of them are: We already know that `x86_64` has a feature called `Interrupt Stack Table` or `IST` and this feature provides the ability to switch to a new stack for events non-maskable interrupt, double fault etc. There can be up to seven `IST` entries per-cpu. Some of them are: