Мы начали изучение внутренностей Linux в предыдущей [части](linux-bootstrap-1.md) и увидели начальную часть кода настройки ядра. Мы остановились на вызове функции `main` (это первая функция, написанная на C) из [arch/x86/boot/main.c](https://github.com/torvalds/linux/blob/master/arch/x86/boot/main.c).
Прежде чем мы сможем перейти к нативному для Intel 64 режиму [Long Mode](http://en.wikipedia.org/wiki/Long_mode), ядро должно переключить ЦПУ в защищённый режим.
Что такое [защищённый режим](https://en.wikipedia.org/wiki/Protected_mode)? Защищённый режим был впервые добавлен в архитектуре x86 в 1982 году и был основным режимом процессоров Intel начиная с [80286](http://en.wikipedia.org/wiki/Intel_80286), пока в Intel 64 не появился режим Long Mode.
Основная причина не использовать [режим реальных адресов](http://wiki.osdev.org/Real_Mode) заключается в том, что возможен лишь очень ограниченный доступ к оперативной памяти. Как вы помните из предыдущей части, есть только 2<sup>20</sup> байт или 1 мегабайт, а иногда даже 640 килобайт оперативной памяти, доступной в режиме реальных адресов.
Защищённый режим принёс много изменений, но главным является отличие в управлении памятью. 20-битная адресная шина была заменена на 32-битную. Это позволило обеспечить доступ к 4 Гб памяти против 1 мегабайта в режиме реальных адресов. Также была добавлена поддержка [подкачки страниц](http://en.wikipedia.org/wiki/Paging), про которую вы можете прочитать в следующих разделах.
Сегментация памяти в защищённом режиме была полностью переделана. В нём нет фиксированных 64 килобайтных сегментов. Вместо этого, размер и расположение каждого сегмента описывается структурой данных, называемой _дескриптором сегмента_. Дескрипторы сегментов хранятся в структуре данных под названием `глобальная дескрипторная таблица` (GDT).
GDT представляет собой структуру, которая находится в памяти. Она не имеет постоянного места в памяти, поэтому её адрес хранится в специальном регистре `GDTR`. Позже мы увидим загрузку GDT в коде ядра Linux. Там будет операция для её загрузки в память, что-то вроде:
где инструкция `lgdt` загружает базовый адрес и ограничение (размер) глобальной дескрипторной таблицы в регистр `GDTR`. `GDTR` является 48-битным регистром и состоит из двух частей:
Как упоминалось ранее, GDT содержит `дескрипторы сегментов`, которые описывают сегменты памяти. Каждый дескриптор является 64-битным. Общая схема дескриптора такова:
Не волнуйтесь, я знаю, после режима реальных адресов это выглядит немного страшно, но на самом деле это легко. Например, ПРЕДЕЛ 15:0 означает, что биты 0-15 дескриптора содержат значение предела. Остальная его часть находится в ПРЕДЕЛ 19:16. Таким образом, размер предела составляет 0-19, т.е 20 бит. Давайте внимательно взглянем на это:
* G равен 0, предел интерпретируется в терминах 1 байта, а максимальный размер сегмента может составлять 1 мегабайт.
* G равен 1, предел интерпретируется в терминах 4096 байт = 4 килобайта = 1 страница, а максимальный размер сегмента может составлять 4 гигабайта. На самом деле, когда G равен 1, значение предела сдвигается на 12 бит влево. Таким образом, 20 бит + 12 бит = 32 бита и 2<sup>32</sup> = 4 гигабайта.
3. Тип/Атрибут (40-47 бит) определяет тип сегмента и виды доступа к нему.
* Флаг `S` (бит 44) определяет тип дескриптора. Если `S` равен 0, то этот сегмент является системным сегментом, а если `S` равен 1, то этот сегмент является сегментом кода или сегментом данных (сегменты стека являются сегментами данных, которые должны быть сегментами для чтения/записи).
Для того чтобы определить, является ли сегмент сегментом кода или сегментом данных, мы можем проверить атрибут (бит 43), установленный в 0 в приведённой выше схеме. Если он равен 0, то сегмент является сегментом данных, в противном случае это сегмент кода.
Как мы можем видеть, первый бит (бит 43) равен `0` для сегмента _данных_ и `1` для сегмента _кода_. Следующие три бита (40, 41, 42, 43): либо биты `EWA` (бит направления расширения (*E*xpansion), бит записи (*W*ritable), бит обращения (*A*ccessible)), либо `CRA` (бит подчинения (*C*onforming), бит чтения (*R*eadable), бит доступа (*A*ccessible)).
* Если E (бит 42) равен 0, то сегмент растёт вверх, в противном случае растёт вниз. Подробнее [здесь](http://www.sudleyplace.com/dpmione/expanddown.html).
* Если W (бит 41) (для сегмента данных) равен 1, то запись в сегмент разрешена. Обратите внимание, что право на чтение всегда разрешено для сегментов данных.
* A (бит 40) - было ли обращение процессора к сегменту.
* C (бит 43) - бит подчинения (для сегмента кода). Если C равен 1, то сегмент кода может быть выполнен из более низкого уровня привилегий, например, из уровня пользователя. Если C равно 0, то сегмент может быть выполнен только из того же уровня привилегий.
* R (бит 41) (для сегмента кода). Если он равен 1, то чтение сегмента разрешено. Право на запись всегда запрещено для сегмента кода.
4. DPL [2 бита] (уровень привилегий сегмента (Descriptor Privilege Level)) находится в 45-46 битах. Определяет уровень привилегий сегмента от 0 до 3, где 0 является самым привилегированным.
5. Флаг P (бит 47) - указывает на присутствие сегмента в памяти. Если P равен 0, то сегмент является _недействительным_ и процессор откажется читать этот сегмент.
7. Флаг L (бит 53) - указывает на то, содержит ли сегмент кода нативный 64-битный код. Если он равен 1, то сегмент кода будет выполнен в 64-битном режиме.
8. Флаг D/B (бит 54) - флаг разрядности (Default/Big, определяет размер операнда, т.е 16/32 бит. Если он установлен, то находящиеся в сегменте операнды считаются имеющими размер 32 бита, иначе 16 бит.
Сегментные регистры содержат селекторы сегментов, так же как и в режиме реальных адресов. Тем не менее, в защищённом режиме селектор сегмента обрабатывается иначе. Каждый дескриптор сегмента имеет соответствующий селектор сегмента, который представляет собой 16-битную структуру:
* **TI** (Указатель таблицы (Table Indicator)) определяет таблицу, в которой нужно искать дескриптор. Если он равен 0, то поиск происходит в глобальной дескрипторной таблице (GDT), в противном случае в локальной дескрипторной таблице (LDT).
* **RPL** определяет уровень привилегий.
Каждый сегментный регистр имеет видимую и скрытую часть.
* Селектор сегмента должен быть загружен в один из сегментных регистров
* ЦПУ пытается найти дескриптор сегмента по адресу GDT + Index из селектора и загрузить дескриптор в *скрытую* часть сегментного регистра
* Базовый адрес (из дескриптора сегмента) + смещение будет линейным адресом сегмента, который является физическим адресом (если подкачка страниц отключена).
Полный переход в защищённый режим в ядре Linux мы увидим в следующей части, но прежде чем мы сможем перейти в защищённый режим, нужно совершить ещё несколько приготовлений.
Давайте посмотрим на [arch/x86/boot/main.c](https://github.com/torvalds/linux/blob/master/arch/x86/boot/main.c). Мы можем видеть некоторые подпрограммы, которые выполняют инициализацию клавиатуры, инициализацию кучи и т.д. Рассмотрим это.
Мы стартуем из подпрограммы `main` в "main.c". Первая функция, которая вызывается в `main` - [`copy_boot_params(void)`](https://github.com/torvalds/linux/blob/master/arch/x86/boot/main.c#L30). Она копирует заголовок настройки ядра в поле структуры `boot_params`, которая определена в [arch/x86/include/uapi/asm/bootparam.h](https://github.com/torvalds/linux/blob/master/arch/x86/include/uapi/asm/bootparam.h#L113).
Структура `boot_params` содержит поле `struct setup_header hdr`. Эта структура содержит те же поля, что и в [протоколе загрузки Linux](https://www.kernel.org/doc/Documentation/x86/boot.txt) и заполняется загрузчиком, а так же во время компиляции/сборки ядра. `copy_boot_params` делает две вещи:
1. Копирует `hdr` из [header.S](https://github.com/torvalds/linux/blob/master/arch/x86/boot/header.S#L281) в структуру `boot_params` в поле `setup_header`
Обратите внимание на то что он копирует `hdr`с помощью функции `memcpy`, которая определена в [copy.S](https://github.com/torvalds/linux/blob/master/arch/x86/boot/copy.S). Взглянем на неё:
Да, мы только что перешли в C-код и снова вернулись в ассемблер :) Прежде всего мы видим, что `memcpy` и другие подпрограммы, расположенные здесь, начинаются и заканчиваются двумя макросами: `GLOBAL` и `ENDPROC`. Макрос `GLOBAL` описан в [arch/x86/include/asm/linkage.h](https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/linkage.h) и определяет директиву `globl`, а так же метку для него. `ENDPROC` описан в [include/linux/linkage.h](https://github.com/torvalds/linux/blob/master/include/linux/linkage.h); отмечает символ `name` в качестве имени функции и заканчивается размером символа `name`.
Реализация `memcpy` достаточно простая. Во-первых, она помещает значения регистров `si` and `di` в стек для их сохранения, так как они будут меняться в течении работы. `memcpy` (как и другие функции в copy.S) использует `fastcall` соглашения о вызовах. Таким образом, она получает свои входные параметры из регистров `ax`, `dx` и `cx`. Вызов `memcpy` выглядит следующим образом:
`memcpy` помещает адрес `boot_params.hdr` в `di` и сохраняет размер в стеке. После этого она сдвигается вправо на 2 размера (или делит на 4) и копирует из `si` в `di` по 4 байта. Далее снова восстанавливает размер `hdr`, выравнивает по 4 байта и копирует остальную часть байтов из `si` в `di` побайтово (если они есть). В конце восстанавливает значения `si` и `di` из стека и после этого завершает копирование.
После того, как `hdr` скопирован в `boot_params.hdr`, следующим шагом является инициализация консоли с помощью вызова функции `console_init`, определённой в [arch/x86/boot/early_serial_console.c](https://github.com/torvalds/linux/blob/master/arch/x86/boot/early_serial_console.c).
Функция пытается найти опцию `earlyprintk` в командной строке и, если поиск завершился успехом, парсит адрес порта, скорость передачи данных для последовательного порта и инициализирует последовательный порт. Значение опции `earlyprintk` может быть одним из следующих:
Определение `puts` находится в [tty.c](https://github.com/torvalds/linux/blob/master/arch/x86/boot/tty.c). Как мы видим, она печатает символ за символом в цикле, вызывая функцию `putchar`. Давайте посмотрим на реализацию `putchar`:
`__attribute__((section(".inittext")))` означает, что код будет находиться в секции `.inittext`. Мы можем найти его в файле линкёра [setup.ld](https://github.com/torvalds/linux/blob/master/arch/x86/boot/setup.ld#L19).
Прежде всего, `putchar` проверяет символ `\n` и, если он найден, печатает перед ним `\r`. После этого она выводит символ на экране VGA, вызвав BIOS с прерыванием `0x10`:
`initregs` принимает структуру `biosregs` и в первую очередь заполняет `biosregs` нулями, используя функцию `memset`, а затем заполняет его значениями регистра.
Как мы можем видеть, `memset` использует `fastcall` соглашения о вызовах, так же как и `memcpy`: это означает, что функция получает свои параметры из регистров `ax`, `dx` и `cx`.
Как правило, реализация `memset` подобна реализации memcpy. Она сохраняет значение регистра `di` в стеке и помещает значение `ax` в `di`, которое является адресом структуры `biosregs`. Далее идёт инструкция `movzbl`, которая копирует значение `dl` в нижние 2 байта регистра `eax`. Оставшиеся 2 верхних байта `eax` будут заполнены нулями.
Следующая инструкция умножает `eax` на `0x01010101`. Это необходимо, так как `memset` будет копировать 4 байта одновременно. Например, нам нужно заполнить структуру значением `0x7`с помощью memset. В этом случае `eax` будет содержать значение `0x00000007`. Так что если мы умножим `eax` на `0x01010101`, мы получим `0x07070707` и теперь мы можем скопировать эти 4 байта в структуру. `memset` использует инструкцию `rep; stosl` для копирования `eax` в `es:di`.
После того, как структура `biosregs` заполнена с помощью `memset`, `bios_putchar` вызывает прерывание [0x10](http://www.ctyme.com/intr/rb-0106.htm) для вывода символа. Затем она проверяет, инициализирован ли последовательный порт, и в случае если он инициализирован, записывает в него символ с помощью инструкций [serial_putchar](https://github.com/torvalds/linux/blob/master/arch/x86/boot/tty.c#L30) и `inb/outb`.
После подготовки стека и BSS в [header.S](https://github.com/torvalds/linux/blob/master/arch/x86/boot/header.S) (смотрите предыдущую [часть](linux-bootstrap-1.md)), ядро должно инициализировать [кучу](https://github.com/torvalds/linux/blob/master/arch/x86/boot/main.c#L116) с помощью функции [`init_heap`](https://github.com/torvalds/linux/blob/master/arch/x86/boot/main.c#L116).
В первую очередь `init_heap` проверяет флаг [`CAN_USE_HEAP`](https://github.com/torvalds/linux/blob/master/arch/x86/include/uapi/asm/bootparam.h#L21) в [`loadflags`](https://github.com/torvalds/linux/blob/master/arch/x86/boot/header.S#L321) в заголовке настройки ядра и если флаг был установлен, вычисляет конец стека:
что означает `heap_end_ptr` или `_end` + `512`(`0x200h`). Последняя проверка заключается в сравнении `heap_end` и `stack_end`. Если `heap_end` больше `stack_end`, то присваиваем `stack_end` значение `heap_end`, чтобы сделать их равными.
Теперь куча инициализирована и мы можем использовать её с помощью метода `GET_HEAP`. В следующих постах мы увидим как она используется, как её использовать и как она реализуется.
Следующим шагом является проверка ЦПУ с помощью `validate_cpu` из [arch/x86/boot/cpu.c](https://github.com/torvalds/linux/blob/master/arch/x86/boot/cpu.c).
Она вызывает функцию [`check_cpu`](https://github.com/torvalds/linux/blob/master/arch/x86/boot/cpucheck.c#L102) и передаёт ей два параметра: уровень ЦПУ и необходимый уровень ЦПУ; `check_cpu` проверяет, запущено ли ядро на нужном уровне ЦПУ.
`check_cpu` проверяет флаги ЦПУ, наличие [long mode](http://en.wikipedia.org/wiki/Long_mode) в случае x86_64 (64-битного) ЦПУ, проверяет поставщика процессора и делает специальные подготовки для некоторых производителей, такие как отключение SSE+SSE2 для AMD в случае их отсутствия и т.д.
Следующим шагом является обнаружение памяти с помощью функции `detect_memory`. `detect_memory` в основном предоставляет карту доступной оперативной памяти. Она использует различные программные интерфейсы для обнаружения памяти, такие как `0xe820`, `0xe801` и `0x88`. Здесь мы будем рассматривать только реализацию **0xE820**.
Давайте посмотрим на реализацию `detect_memory_e820` в [arch/x86/boot/memory.c](https://github.com/torvalds/linux/blob/master/arch/x86/boot/memory.c). Прежде всего, функция `detect_memory_e820` инициализирует структуру `biosregs`, как мы видели выше, и заполняет регистры специальными значениями для вызова `0xe820`:
Далее идёт цикл, в котором будут собраны данные о памяти. Он начинается с вызова BIOS прерывания `0x15`, который записывает одну строку из таблицы распределения адресов. Для получения следующей строки мы должны снова вызвать это прерывание (что мы и делаем в цикле). До следующего вызова `ebx` должен содержать значение, возвращённое ранее:
Следующим шагом является инициализация клавиатуры с помощью вызова функции [`keyboard_init()`](https://github.com/torvalds/linux/blob/master/arch/x86/boot/main.c#L65). Вначале `keyboard_init` инициализирует регистры с помощью функции `initregs` и вызова прерывания [0x16](http://www.ctyme.com/intr/rb-1756.htm) для получения статуса клавиатуры.
Следующие несколько шагов - запросы для различных параметров. Мы не будем погружаться в подробности этих запросов, но вернёмся к этому в последующих частях. Давайте коротко взглянем на эти функции:
Функция [query_mca](https://github.com/torvalds/linux/blob/master/arch/x86/boot/mca.c#L18) вызывает BIOS прерывание [0x15](http://www.ctyme.com/intr/rb-1594.htm) для получения машинного номера модели, номера субмодели, номера ревизии BIOS, а также других аппаратно-ориентированных атрибутов:
Функция заполняет регистр `ah` значением `0xc0` и вызывает BIOS прерывание `0x15`. После выполнения прерывания она проверяет [флаг переноса](http://en.wikipedia.org/wiki/Carry_flag) и если он установлен в 1, то это означает, что BIOS не поддерживает [**MCA**](https://en.wikipedia.org/wiki/Micro_Channel_architecture). Если флаг переноса установлен в 0, `ES:BX` будет содержать указатель на таблицу системной информации, которая выглядит следующим образом:
Функция содержит ассемблерную вставку, которая получает значение параметра `seg` и помещает его в регистр `fs`. Существует много функций в [boot.h](https://github.com/torvalds/linux/blob/master/arch/x86/boot/boot.h), похожих на `set_fs`, например, `set_gs`, `fs`, `gs` для чтения значения в нём и т.д.
Следующим шагом является получение информации [Intel SpeedStep](http://en.wikipedia.org/wiki/SpeedStep) с помощью вызова функции `query_ist`. В первую очередь она проверяет уровень ЦПУ, и если он верный, вызывает прерывание `0x15` для получения информации и сохраняет результат в `boot_params`.
Следующая функция - [query_apm_bios](https://github.com/torvalds/linux/blob/master/arch/x86/boot/apm.c#L21) получает из BIOS информацию об [Advanced Power Management](http://en.wikipedia.org/wiki/Advanced_Power_Management). `query_apm_bios` также вызывает BIOS прерывание `0x15`, но с`ah = 0x53` для проверки поддержки `APM`. После выполнения `0x15`, функция `query_apm_bios` проверяет сигнатуру `PM` (она должна быть равна `0x504d`), флаг переноса (он должен быть равен 0, если есть поддержка `APM`) и значение регистра `cx` (оно должено быть равно 0x02, если есть поддержка защищённого режима).
Далее она снова вызывает `0x15`, но с`ax = 0x5304` для отсоединения от интерфейса `APM` и подключению к интерфейсу 32-битного защищённого режима. В итоге она заполняет `boot_params.apm_bios_info` значениями, полученными из BIOS.
Последняя функция - [`query_edd`](https://github.com/torvalds/linux/blob/master/arch/x86/boot/edd.c#L122), которая запрашивает из BIOS информацию об`Enhanced Disk Drive`. Давайте взглянем на реализацию `query_edd`.
В первую очередь она читает опцию [edd](https://github.com/torvalds/linux/blob/master/Documentation/kernel-parameters.txt#L1023) из командной строки ядра и если она установлена в `off`, то `query_edd` завершает свою работу.
где `0x80` - первый жёсткий диск, а значение макроса `EDD_MBR_SIG_MAX` равно 16. Она собирает данные в массив структур [edd_info](https://github.com/torvalds/linux/blob/master/include/uapi/linux/edd.h#L172). `get_edd_info` проверяет наличие EDD путём вызова прерывания `0x13`с`ah = 0x41` и если EDD присутствует, `get_edd_info` снова вызывает `0x13`, но с`ah = 0x48` и `si`, содержащим адрес буфера, где будет храниться информация о EDD.
Это конец второй части о внутренностях ядра Linux. В следующей части мы увидим настройки режима видео и остальные подготовки перед переходом в защищённый режим и непосредственно переход в него.
**Пожалуйста, имейте в виду, что английский - не мой родной язык, и я очень извиняюсь за возможные неудобства. Если вы найдёте какие-нибудь ошибки, пожалуйста, пришлите pull request в [linux-insides](https://github.com/0xAX/linux-internals).**