
Parametricity

Types Are Documentation

Tony Morris

The Journey
Fast and loose reasoning is morally correct

Danielsson, Hughes, Jansson & Gibbons [DHJG06] tell us:
Functional programmers often reason about programs

as if they were written in a total language, expecting the
results to carry over to non-total (partial) languages. We
justify such reasoning.

The Journey
Theorems for Free!

Philip Wadler [Wad89] tells us:
Write down the definition of a polymorphic function

on a piece of paper. Tell me its type, but be careful not
to let me see the function’s definition. I will tell you a
theorem that the function satisfies.

The purpose of this paper is to explain the trick.

Scala

We will use the Scala programming language for code
examples
However, the point of this talk does not relate to Scala
specifically

Scala

Other languages and syntax may be used to denote important
concepts and ensure clarity

Why Scala?

Scala is a legacy hack used primarily by Damo for ciggy-butt
brain programming
Yet it is capable of achieving a high degree of code reasoning
Speak up if unfamiliarity of syntax inhibits understanding

The Parametricity Trick

This will only work if. . .
you write computer programs with inveterate exploitation of
the functional programming thesis
you understand that anything else is completely insane
and if you don’t, you’re just being a wrong person

The Parametricity Trick

This will only work if. . .
you write computer programs with inveterate exploitation of
the functional programming thesis
you understand that anything else is completely insane
and if you don’t, you’re just being a wrong person

Reminder

So what is functional programming?
a means of programming by which expressions are referentially
transparent.
but what is referential transparency?

Reminder

So what is functional programming?
a means of programming by which expressions are referentially
transparent.
but what is referential transparency?

Referential Transparency

referential transparency is a potential property of expressions
functions provide users with referentially transparent
expressions

The Test for Referential Transparency
An expression expr is referentially transparent if in all programs p,
all occurrences of expr in p can be replaced by the result assigned
to expr without causing an observable effect on p.

Referential Transparency

referential transparency is a potential property of expressions
functions provide users with referentially transparent
expressions

The Test for Referential Transparency
An expression expr is referentially transparent if in all programs p,
all occurrences of expr in p can be replaced by the result assigned
to expr without causing an observable effect on p.

Referential Transparency

referential transparency is a potential property of expressions
functions provide users with referentially transparent
expressions

The Test for Referential Transparency
An expression expr is referentially transparent if in all programs p,
all occurrences of expr in p can be replaced by the result assigned
to expr without causing an observable effect on p.

Referential Transparency

Example program

p = {
result = expr
result = expr
f(expr , expr)

}

Refactoring of program

p = {
f(result , result)

}

Is the program refactoring observable for all values of f?

Referential Transparency

Example program

p = {
result = expr
result = expr
f(expr , expr)

}

Refactoring of program

p = {
f(result , result)

}

Is the program refactoring observable for all values of f?

Referential Transparency

Example program

p = {
result = expr
result = expr
f(expr , expr)

}

Refactoring of program

p = {
f(result , result)

}

Is the program refactoring observable for all values of f?

Functional Programming

FP is a commitment to preserving referential transparency

Lossful Reasoning
Sacrificing efficiency to gain unreliability

Suppose we encountered the following function definition:
def add10(n: Int): Int

By the type alone, there are (232)232 possible implementations

Lossful Reasoning
Sacrificing efficiency to gain unreliability

We might form a suspicion that add10 adds ten to its argument
def add10 (n: Int): Int

Lossful Reasoning
Sacrificing efficiency to gain unreliability

So we write some tests:
add10 (0) = 10
add10 (5) = 15
add10 (-5) = 5
add10 (223) = 233
add10 (5096) = 5106
add10 (2914578) = 29145588
add10 (-2914578) = -29145568

And conclude, yes, this function adds ten to its argument

Lossful Reasoning
Sacrificing efficiency to gain unreliability

def add10(n: Int): Int =
if(n < 8000000) n + 10
else n * 7

Wason Rule Discovery Test, confirmation bias[GB02].

Lossful Reasoning
Sacrificing efficiency to gain unreliability

We will just write more tests!
add10 (18916712) = 18916722
add10 (-18916712) = -18916702

. . . or we might come up with some system of apologetics for this
shortfall

“A negligent programmer has misnamed this function"
“More tests will fix it"
“Well we can’t test everything!"

Lossful Reasoning
Sacrificing efficiency to gain unreliability

We are reinforcing our excess confidence in our belief that we are
being responsible programmers

We aren’t

Lossful Reasoning
Efficiency

Actually, we can do significantly better with a machine-checked
proof, mitigating our disposition to biases

Automating "Automated Testing"?

Reasoning with parametricity

Monomorphic Signature
Examining the signature Int => Int

We see a lot of things this function does not do
For example, it never returns the value "abc"

However, there is an unmanageable number of possible things
it might do

Reasoning with parametricity

Another monomorphic example
Examining the signature List[Int] =>List[Int]

For example, it might add all the Ints and return a list
arrangement that depends on whether or not the result is a
prime number
The possibilities are enormous

Reasoning with parametricity

Polymorphic Signature

def irrelevant [A](x: List[A]): List[A]

We can immediately assert, with confidence, a lot of things
about how this function works because it is polymorphic
More directly, we assert what the function does not do
In other words, parametricity has improved readability
Really? By how much?

List <A> irrelevant <A >(List <A> x) // C#

<A> List <A> irrelevant (List <A> x) // Java

Reasoning with parametricity

Polymorphic Signature

def irrelevant [A](x: List[A]): List[A]

We can immediately assert, with confidence, a lot of things
about how this function works because it is polymorphic
More directly, we assert what the function does not do
In other words, parametricity has improved readability
Really? By how much?

List <A> irrelevant <A >(List <A> x) // C#

<A> List <A> irrelevant (List <A> x) // Java

Reasoning with parametricity

def irrelevant [A](x: List[A]): List[A] =
...

Theorem
Every element A in the result list appears in the input.
Contraposed, If A is not in the input, it is not in the result

List <A> irrelevant <A >(List <A> x) // C#

<A> List <A> irrelevant (List <A> x) // Java

Reasoning with parametricity

I know this because . . .
Because I am the boss and I said so
Because Reliable Rob told me so
Because the function name told me so
Because the comment told me so
Because it would not have compiled otherwise

Reasoning with parametricity

I know this because . . .
Because I am the boss and I said so
Because Reliable Rob told me so
Because the function name told me so
Because the comment told me so
Because it would not have compiled otherwise

Reasoning with parametricity

I know this because . . .
Because I am the boss and I said so
Because Reliable Rob told me so
Because the function name told me so
Because the comment told me so
Because it would not have compiled otherwise

Reasoning with parametricity

I know this because . . .
Because I am the boss and I said so
Because Reliable Rob told me so
Because the function name told me so
Because the comment told me so
Because it would not have compiled otherwise

Reasoning with parametricity

I know this because . . .
Because I am the boss and I said so
Because Reliable Rob told me so
Because the function name told me so
Because the comment told me so
Because it would not have compiled otherwise

Reasoning with parametricity

Uninhabited Example

def irrelevant [A, B](a: A): B =
...

Theorem
This function never returns because if it did, it would never have
compiled

List irrelevant <A, B >(List <A> x) // C#

<A, B> List irrelevant (List <A> x) // Java

Reasoning with parametricity

Fast and loose reasoning is morally correct [DHJG06]
Functional programmers often reason about programs as if they were
written in a total language, expecting the results to carry over to
non-total (partial) languages. We justify such reasoning.

What does this mean exactly?

Fast and Loose Reasoning

def even(p: Int): Boolean =
...

Theorem
The even function returns either true or false

bool even(int p) // C#

boolean even (int p) // Java

Fast and Loose Reasoning

def even(p: Int): Boolean =
even(p)

Actually, the even function doesn’t even return, yet we casually
exclude this possibility in discussion.

Fast and Loose Reasoning

Scala has a few lot of undermining escape hatches
null

exceptions
Type-casing (isInstanceOf)
Type-casting (asInstanceOf)
Side-effects
equals/toString/hashCode

notify/wait

classOf/.getClass

General recursion

Fast and Loose Reasoning
null escape hatch

def irrelevant [A](x: List[A]): List[A] =
null

Theorem
Every A element in the result list appears in the input list

Well, not if you don’t even return a list. null breaks
parametricity.

Fast and Loose Reasoning
type-casing escape hatch

def irrelevant [A](x: A): Boolean =
x. isInstanceOf [Int] ||
x match {

case (s: String) => s. length < 10
}

Theorem
This function ignores its argument and consistently returns either
true or false

Type-casing1 breaks parametricity

1case-analysis on type

Fast and Loose Reasoning
type-casting escape hatch

def irrelevant [A](x: List[A]): List[A] =
"abc". asInstanceOf [A] :: x

Theorem
Every A element in the result list appears in the input list

Type-casting breaks parametricity

Fast and Loose Reasoning
side-effect escape hatch

def irrelevant [A](x: A): A = {
println ("hi")
x

}

Theorem
This function only ever does one thing —return its argument

Side-effects breaks parametricity

Fast and Loose Reasoning
toString escape hatch

def irrelevant [A](x: A): Int =
x. toString . length

Theorem
This function ignores its argument to return one of 232 values.

Java’s Object methods break parametricity

Fast and Loose Reasoning
where to place our trust?

def reverse [A, B](x: List[A]): List[B] =
x. foldLeft [List[B]](Nil)((b, a) =>

a. asInstanceOf [B] :: b)

Theorem
This function always returns Nil and so cannot possibly reverse
the list

Type-casting breaks parametricity

Fast and Loose Reasoning

Scala sure does have a lot of escape hatches!
if we abandon all these escape hatches, to what extent is the
programming environment disabled?

Fast and Loose Reasoning

For example, Haskell disables side-effects, type-casing and
type-casting, giving a significant advantage for no penalty
so what about Scala?
can we use a reliable subset without too much penalty?

The Scalazzi Safe Scala Subset

Yes.

And we do.

Fast and Loose Reasoning

The Scalazzi Safe Scala Subset
null

exceptions
Type-casing (isInstanceOf)
Type-casting (asInstanceOf)
Side-effects
equals/toString/hashCode

notify/wait

classOf/.getClass

General recursion

Fast and Loose Reasoning

The Scalazzi Safe Scala Subset
We have now improved our reasoning abilities, but at what
cost?
It turns out that eliminating these escape hatches results in a
significant language improvement with minimal,
orthogonal, easily-managed penalties
In other words, we can assume the language subset absent
these attributes and by doing so, achieve a large net benefit

Fast and Loose Reasoning

The Scalazzi Safe Scala Subset
We have now improved our reasoning abilities, but at what
cost?
It turns out that eliminating these escape hatches results in a
significant language improvement with minimal,
orthogonal, easily-managed penalties
In other words, we can assume the language subset absent
these attributes and by doing so, achieve a large net benefit

Fast and Loose Reasoning

The Scalazzi Safe Scala Subset
We have now improved our reasoning abilities, but at what
cost?
It turns out that eliminating these escape hatches results in a
significant language improvement with minimal,
orthogonal, easily-managed penalties
In other words, we can assume the language subset absent
these attributes and by doing so, achieve a large net benefit

Fast and Loose Reasoning
It works

Some open-source projects, using Scala, even Java and C#,
apply fast and loose reasoning to achieve confidence in the
excellence of other team members
Project contributors rarely step on each others’ (or their own)
toes precisely because of this optimistic approach
Cynics fail hard

Fast and Loose Reasoning
It works

Some open-source projects, using Scala, even Java and C#,
apply fast and loose reasoning to achieve confidence in the
excellence of other team members
Project contributors rarely step on each others’ (or their own)
toes precisely because of this optimistic approach
Cynics fail hard

Fast and Loose Reasoning
It works

Some open-source projects, using Scala, even Java and C#,
apply fast and loose reasoning to achieve confidence in the
excellence of other team members
Project contributors rarely step on each others’ (or their own)
toes precisely because of this optimistic approach
Cynics fail hard

Fast and Loose Reasoning
It works

Parametricity is principled and it works

Tell me again about this "real world."

Scaling Parametricity

def forallM [F[_]: Monad , A]
(p: A => F[Boolean], o: Option [A]): F[Boolean]

Theorem
The Boolean result depends on zero or more of

None of its arguments
Whether the Option is a Some or None

If the Option is a Some, then the result of having applied the
given function to the Some value
Multiple applications of sequencing of the effect
(F[Boolean]) in the Some case

in other words, one of (2 * 2 * 2) inhabitants before
accounting for multiple effect sequencing

Scaling Parametricity

We conclude that, discounting multiple effect sequencing, there are
8 possible inhabitants 1:

1 always false
2 always true
3 o.isDefined
4 o.isEmpty
5 Some(a) => p(a) else false
6 Some(a) => p(a) else true
7 Some(a) => !p(a) else false
8 Some(a) => !p(a) else true

Scaling Parametricity

Importantly
The implementation may only use the monad primitive operations,
even though the use-case may apply a specific monad context. If it
were a specific monad (e.g. F=List), the inhabitants become
wildly unmanageable and the value of using the type for
documentation hovers ever closer to zero.

Scaling Parametricity

For example
The forallM function definitely does not perform any IO effects
(F=IO), even though the function user may apply that specific
use-case

and so on . . .

The Limits of Parametricity

def thisIsNotReverse [A](x: List[A]): List[A]

OK, so we know that all elements in the result appear in the input
but how do we narrow it down?
how do we rule out all possibilities for the type but one?
how do we specifically determine what the function does?

The Limits of Parametricity
No pretending

By types (proof) alone, it is not possible to narrow down to one
possibility in the general case

However
We can provide once-inhabitance for some specific cases
Types are proof-positive
We have tools to assist us when we come up against these
limitations
Tests are failed proof-negative

The Limits of Parametricity
Coding exercise

Produce an implementation that does not reverse

module ThisMightReverse where

-- | This function does not reverse .
--
-- >>> thisMightReverse []
-- []
--
-- prop > (thisMightReverse . thisMightReverse) x == x
--
-- prop > thisMightReverse (x ++ y) == (thisMightReverse y ++ thisMightReverse x)
thisMightReverse ::

[Int]
-> [Int]

thisMightReverse =
error "todo"

The Limits of Parametricity
Coding exercise

Produce an implementation that does not reverse

module ThisMightReverse where

-- | This function does not reverse .
--
-- >>> thisMightReverse []
-- []
--
-- prop > (thisMightReverse . thisMightReverse) x == x
--
-- prop > thisMightReverse (x ++ y) == (thisMightReverse y ++ thisMightReverse x)
thisMightReverse ::

[Int]
-> [Int]

thisMightReverse =
let sw i | even i = i + 1

| otherwise = i - 1
in foldl (flip (:)) [] . map sw

The Limits of Parametricity
Coding exercise —parametric

Produce an implementation that does not reverse

module ThisMightReverse where

-- | This function does not reverse .
--
-- >>> thisMightReverse []
-- []
--
-- prop > (thisMightReverse . thisMightReverse) x == x
--
-- prop > thisMightReverse (x ++ y) == (thisMightReverse y ++ thisMightReverse x)
thisMightReverse ::

[a]
-> [a]

thisMightReverse =
error "todo"

The Limits of Parametricity
Coding exercise —parametric

We can’t!

The Limits of Parametricity
Coding exercise —parametric

The function has been fully-specified by:
The parametric type
Tests

The Limits of Parametricity
Coding exercise —parametric

The function, thisMightReverse definitely reverses the list
without looking at the source code or the function name

Parametricity

Parametricity is . . .
an efficient, reliable tool to assist code-readability to assist creating
non-trivial software in a team environment.

Parametricity

Fast and loose reasoning is morally correct
Identifier-name reasoning is morally obnoxious

References

Nils Anders Danielsson, John Hughes, Patrik Jansson, and
Jeremy Gibbons, Fast and loose reasoning is morally correct,
ACM SIGPLAN Notices, vol. 41, ACM, 2006, pp. 206–217.

Maggie Gale and Linden J Ball, Does positivity bias explain
patterns of performance on wason’s 2-4-6 task?

Philip Wadler, Theorems for free!, Proceedings of the fourth
international conference on Functional programming languages
and computer architecture, ACM, 1989, pp. 347–359.

forallM has 8 inhabitants

forallM :: Monad m => (a -> m Bool) -> Maybe a -> m Bool
forallM _ _ = return False

forallM :: Monad m => (a -> m Bool) -> Maybe a -> m Bool
forallM _ _ = return True

forallM :: Monad m => (a -> m Bool) -> Maybe a -> m Bool
forallM _ Nothing = return False
forallM _ (Just _) = return True

forallM :: Monad m => (a -> m Bool) -> Maybe a -> m Bool
forallM _ Nothing = return True
forallM _ (Just _) = return False

forallM :: Monad m => (a -> m Bool) -> Maybe a -> m Bool
forallM _ Nothing = return False
forallM p (Just a) = p a

forallM :: Monad m => (a -> m Bool) -> Maybe a -> m Bool
forallM _ Nothing = return True
forallM p (Just a) = p a

forallM :: Monad m => (a -> m Bool) -> Maybe a -> m Bool
forallM _ Nothing = return False
forallM p (Just a) = p a >>= return . not

forallM :: Monad m => (a -> m Bool) -> Maybe a -> m Bool
forallM _ Nothing = return True
forallM p (Just a) = p a >>= return . not

	Appendix
	forallM has 8 inhabitants

