
LearnHaskell

bitemyapp

Contents

The Guide 4

Community . 4

Community Guidelines . 5

What are Haskell, GHC, and Cabal? 5

GHC . 5

Cabal . 5

Getting set-up 5

Ubuntu . 5

Debian . 6

GHC Repository for debian stable 6

Using Ubuntu PPA . 6

Manual compilation . 7

Fedora 21 . 7

Arch Linux . 7

Gentoo . 8

Mac OS X . 9

10.9 . 9

1

10.6-10.8 . 9

Windows . 9

Other Linux users . 10

Primary Courses 10

Yorgey’s cis194 course . 10

NICTA course . 10

Supplementary Course cs240h . 11

Reference material for the three courses 11

What does that <- / do / list comprehension syntactic sugar do? 11

For understanding list and fold 12

For learning some common typeclasses 12

Understanding basic Haskell error messages 12

Laziness, strictness, guarded recursion 12

Brief demonstration . 13

IO 13

Monads and monad transformers 14

Monad transformers . 14

Testing, tests, specs, generative/property testing 14

Parsing in Haskell 15

Parsing and generating JSON . 15

Graph algorithms and data structures 15

2

Development Environment 16

Emacs . 16

Vim . 16

Sublime Text . 16

FAQ and working with Cabal 17

Fantastic FAQ . 17

Cabal guidelines . 17

Stackage . 17

Hoogle and Haddock 18

Search code by type signature . 18

Setting up your own local instance of Hoogle 18

Haddock . 18

What you really need to know . 18

TravisCI 19

Frontend/JavaScript 19

Which frontend language do I use? 20

For a more thorough understanding of laziness, NF, WHNF 20

Research papers about lazy lambda calculi 20

Parallelism/Concurrency 21

Lenses and Prisms 21

Recursion Schemes 21

3

GHC Core and performance tuning 22

Graph algorithms and data structures 22

Type and Category Theory 23

Books . 23

Stephen’s Nifty “How to get to monad” posts 24

Other theoretical topics 24

Parametricity, ad-hoc vs. parametric polymorphism, free theorems . . . 24

Initial and Final, DSLs, Finally Tagless 24

Comonads . 25

Yoneda / CoYoneda . 25

Propositions vs. Judgments (computation) 25

Dependent typing 25

Extended Reading list 25

Dialogues . 26

The Guide

This is my recommended path for learning Haskell.

Something to keep in mind: don’t sweat the stuff you don’t understand
immediately. Just keep moving.

Community

Our IRC channel is #haskell-beginners on Freenode.

IRC web client here.

The haskell mailing lists.

4

http://webchat.freenode.net/
https://wiki.haskell.org/Mailing_lists

Community Guidelines

Letter to a Young Haskell Enthusiast

Be nice above all else!

What are Haskell, GHC, and Cabal?

Haskell is a programming language as laid out in the reports, most recent one
being in 2010. The report is available as the onlinereport.

GHC

GHC is the most popular way to work in the Haskell language. It includes a
compiler, REPL (interpreter), package management, and other things besides.

Cabal

Cabal does project management and dependency resolution. It’s how you’ll install
projects, typically into their own sandbox.

Cabal is equivalent to Ruby’s Bundler, Python’s pip, Node’s NPM, Maven, etc.
GHC manages packaging itself, Cabal chooses what versions to install.

Getting set-up

Ubuntu

This PPA is excellent and is what I use on all my Linux dev and build machines.

Specifically:

$ sudo apt-get update
$ sudo apt-get install python-software-properties # v12.04 and below
$ sudo apt-get install software-properties-common # v12.10 and above

5

http://comonad.com/reader/2014/letter-to-a-young-haskell-enthusiast/
http://www.haskell.org/onlinereport/haskell2010/
http://www.haskell.org/ghc/
https://www.haskell.org/cabal/download.html
http://launchpad.net/~hvr/+archive/ghc

$ sudo add-apt-repository -y ppa:hvr/ghc
$ sudo apt-get update
$ sudo apt-get install cabal-install-1.20 ghc-7.8.3 happy-1.19.4 alex-3.1.3

Then add the following to your $PATH (bash_profile, zshrc, bashrc, etc):

• ~/.cabal/bin
• /opt/cabal/1.20/bin
• /opt/ghc/7.8.3/bin
• /opt/happy/1.19.4/bin
• /opt/alex/3.1.3/bin

Optional: You could also add .cabal-sandbox/bin to your path. Code that
you are actively developing will be available to you from the command line. This
only works when your current working directory is a cabal sandbox.

Debian

GHC Repository for debian stable

If you use Debian stable, it is easier to use http://deb.haskell.org/. To use it:

• Add the line deb http://deb.haskell.org/stable/ ./ to
/etc/apt/sources.list

Add the key to avoid warnings
$ GET http://deb.haskell.org/deb.haskell.org.gpg-key | apt-key add -
$ sudo apt-get update
$ sudo apt-get install ghc-7.8.3 happy alex cabal-install

Using Ubuntu PPA

If you’re not using stable, you can follow the same steps as Ubuntu, but will have to
execute an additional command. Immediately after sudo add-apt-repository
-y ppa:hvr/ghc is executed run:

6

$ sudo sed -i s/jessie/trusty/g /etc/apt/sources.list.d/hvr-ghc-jessie.list

For other Debian versions, just replace all occurences of jessie with your version
name in the command above.

If, for some reason, the file /etc/apt/sources.list.d/hvr-ghc-jessie.list
does not exist, then /etc/apt/sources.list should contain a line like this:

deb http://ppa.launchpad.net/hvr/ghc/ubuntu jessie main

Replace jessie with trusty in this line.

Manual compilation

You can follow this guide written for Mac OS X:

Notes:

• Set your prefix accordingly when configuring ghc.
• Instead of grabbing the cabal-install binary, grab the source and then

run bootstrap.sh script.

Fedora 21

To install Haskell 7.8.4 from the unofficial repo (Fedora 22+ will include it in the
official one):

sudo yum-config-manager --add-repo https://copr.fedoraproject.org/coprs/petersen/ghc-7.8.4/repo/fedora-21/petersen-ghc-7.8.4-fedora-21.repo
sudo yum install ghc cabal-install

As stated in petersen/ghc-7.8.4 copr page this ghc cannot be parallel installed
with Fedora/EPEL ghc.

Arch Linux

To install Haskell from the official repos on Arch Linux, run

$ sudo pacman -S cabal-install ghc happy alex haddock

7

http://www.davesquared.net/2014/05/platformless-haskell.html
https://copr.fedoraproject.org/coprs/petersen/ghc-7.8.4/

Gentoo

On Gentoo, you can install the individual components of the Haskell Plat-
form through Portage. If you use ACCEPT_KEYWORDS=arch (as opposed to
ACCEPT_KEYWORDS=~arch), Portage will install ancient versions of the various
Haskell things. With that in mind, iff you use ACCEPT_KEYWORDS=arch, add the
following to /etc/portage/package.keywords.

dev-haskell/cabal-install

dev-lang/ghc

Once that is done,

$ emerge -jav dev-lang/ghc dev-haskell/cabal-install

Gentoo keeps a “stable” (read: old) version of cabal-install in the Portage
tree, so you’ll want to use cabal-install to install the more recent version.
Note that the backslashes are intentional.

$ \cabal update # The backslashes
$ \cabal install cabal-install # are intentional

You have now installed cabal on a global scale with portage, and locally in
your home directory with cabal-install. The next step is to make sure that
when you run cabal in a terminal, your shell will run the up-to-date version in
your home directory. You will want to add the following lines to your shell’s
configuration file:

PATH=$PATH:$HOME/.cabal/bin
alias cabal="$HOME/.cabal/bin/cabal"

If you don’t know what your shell is, more than likely, your shell is Bash. If
you use Bash, the file you will edit is ~/.bashrc. If you use Z-shell, the file is
~/.zshrc. You can run the following command to find out what your shell is.

8

echo $SHELL | xargs basename

I use zsh, so that command outputs zsh when I run it.

Once you do all of that, you’ll want to install the additional tools alex and
happy.

$ cabal install alex happy

Congratulations! You now have a working Haskell installation!

Mac OS X

10.9

Install the GHC for Mac OS X app, which includes GHC and Cabal. It provides
instructions on how to add GHC and Cabal to your path after you’ve dropped
the .app somewhere.

10.6-10.8

Do the binary distribution install described below with this tarball.

Windows

• The windows minimal GHC installer is able to compile network et al.
Technically in beta but should work for the purposes of anybody reading
this guide.

Don’t forget to run the installer as administrator as it will want to install in your
Program Files.

9

http://ghcformacosx.github.io/
https://www.haskell.org/platform/download/2014.2.0.0/ghc-7.8.3-x86_64-apple-darwin-r3.tar.bz2
http://neilmitchell.blogspot.com/2014/12/beta-testing-windows-minimal-ghc.html

Other Linux users

Download the latest binary distributions for cabal and ghc:

• GHC.

• Cabal.

Detailed manual install guide for Mac OS X You don’t need this if you
use the .app, but if it doesn’t work for you, try this with the binary distribution.

Primary Courses

Yorgey’s cis194 course

Do this first, this is the primary way I recommend being introduced
to Haskell.

Available online.

Brent Yorgey’s course is the best I’ve found so far. This course is valuable as it
will not only equip you to write basic Haskell but also help you to understand
parser combinators.

The only reason you shouldn’t start with cis194 is if you are not a programmer or
are an inexperienced one. If that’s the case, start with Thompson’s book and
transition to cis194.

NICTA course

This is the course I recommend doing after Yorgey’s cis194 course

10

http://www.haskell.org/ghc/
https://www.haskell.org/cabal/download.html
http://www.davesquared.net/2014/05/platformless-haskell.html
http://www.seas.upenn.edu/~cis194/spring13/index.html
https://byorgey.wordpress.com
http://www.haskellcraft.com/craft3e/Home.html

Available on github here.

This will reinforce and give you experience directly implementing the abstractions
introduced in cis194, this is practice which is critical to becoming comfortable
with everyday uses of Functor/Applicative/Monad/etc. in Haskell. Doing cis194
and then the NICTA course represents the core recommendation of my guide and
is how I teach everyone Haskell.

Supplementary Course cs240h

Provides more material on intermediate topics

Available online.

This is Bryan O’Sullivan’s online course from the class he teaches at Stanford.
If you don’t know who he is, take a gander at half the libraries any Haskell
application ends up needing and his name is on it. Of particular note if you’ve
already done the Yorgey course are the modules on phantom types, information
flow control, language extensions, concurrency, pipes, and lenses.

Reference material for the three courses

Learn You a Haskell for Great Good (LYAH) and Real World Haskell (Thanks
bos!) are available online.

I recommend RWH as a reference (thick book). The chapters for parsing and
monads are great for getting a sense for where monads are useful. Other people
have said that they’ve liked it a lot. Perhaps a good follow-up for practical idioms
after you’ve got the essentials of Haskell down?

What does that <- / do / list comprehension syntactic sugar do?

Excellent article.

11

https://github.com/NICTA/course
http://www.scs.stanford.edu/14sp-cs240h/
https://github.com/bos
http://learnyouahaskell.com
http://book.realworldhaskell.org
http://www.haskellforall.com/2014/10/how-to-desugar-haskell-code.html

For understanding list and fold

• Explain List Folds to Yourself

For learning some common typeclasses

Useful for understanding Functor, Applicative, Monad, Monoid and other
typeclasses in general but also some Hask-specific category theory:

• The Typeclassopedia

Understanding basic Haskell error messages

• Understanding basic error messages

Laziness, strictness, guarded recursion

• Marlow’s book about parallelism and concurrency has one of the best
introductions to laziness and normal form I’ve found. Use other material
too if it doesn’t stick immediately.

• More points for lazy evaluation

• Oh my laziness!

• SO question ‘Does haskell have laziness?’

• Johan Tibell’s slides from a talk on reasoning about laziness.

12

http://vimeo.com/64673035
http://www.haskell.org/haskellwiki/Typeclassopedia
http://ics.p.lodz.pl/~stolarek/_media/pl:research:stolarek_understanding_basic_haskell_error_messages.pdf
http://chimera.labs.oreilly.com/books/1230000000929/ch02.html
http://augustss.blogspot.hu/2011/05/more-points-for-lazy-evaluation-in.html
http://alpmestan.com/posts/2013-10-02-oh-my-laziness.html
http://stackoverflow.com/questions/13042353/does-haskell-have-tail-recursive-optimization
https://github.com/tibbe
http://www.slideshare.net/tibbe/reasoning-about-laziness

Brief demonstration

let a = 1 : a -- guarded recursion, (:) is lazy and can be pattern matched.
let (v : _) = a
> v
1
> head a -- head a == v
1

let a = 1 * a -- not guarded, (*) is strict
> a
*** Exception: <<loop>>

IO

• Evaluation order and State tokens

• Unraveling the mystery of the IO monad.

• First class “statements”.

• Haddocks for System.IO.Unsafe.unsafePerformIO Read the docs and note
implementation of unsafeDupablePerformIO

Comment from Reddit thread by glaebhoerl

Interesting side note: GHC needs to hide the state token representa-
tion behind an abstract IO type because the state token must always
be used linearly (not duplicated or dropped), but the type system
can’t enforce this. Clean, another lazy Haskell-like language, has
uniqueness types (which are like linear types and possibly different in
ways I’m not aware of), and they expose the World-passing directly
and provide a (non-abstract) IO monad only for convenience.

13

https://www.fpcomplete.com/user/snoyberg/general-haskell/advanced/evaluation-order-and-state-tokens
http://blog.ezyang.com/2011/05/unraveling-the-mystery-of-the-io-monad/
http://blog.jle.im/entry/first-class-statements
http://hackage.haskell.org/package/base-4.7.0.1/docs/System-IO-Unsafe.html#v:unsafePerformIO

Monads and monad transformers

Do not do these until you understand typeclasses, Monoid, Functor,
and Applicative!

Implement the standard library monads (List, Maybe, Cont, Error, Reader, Writer,
State) for yourself to understand them better. Then maybe write an monadic
interpreter for a small expression language using Monad Transformers Step by
Step paper (mentioned in ‘monad transformers’ below).

Writing many interpreters by just changing the monad to change the semantics
can help convey what’s going on.

• This talk by Tony excellently motivates monad transformers.

Also, reimplement Control.Monad. Functions like mapM or sequence are good
opportunities to practice writing generic monadic code.

The NICTA course can be used as a guide to this process, which will also involve
writing your own Applicative as well.

Credits:

• Reddit comment by htmltyp and Crandom here.

• Reddit comment by jozefg here.

Monad transformers

• A gentle introduction to Monad Transformers.

• Monad transformers step-by-step (warning, code out of date).

Testing, tests, specs, generative/property test-
ing

• This tutorial by Kazu Yamamoto is fantastic.

14

http://www.cs.virginia.edu/~wh5a/personal/Transformers.pdf
http://www.cs.virginia.edu/~wh5a/personal/Transformers.pdf
https://vimeo.com/73648150
http://www.reddit.com/r/haskell/comments/29eke6/basic_program_ideas_for_learning_about_monads/cik5aj6
http://www.reddit.com/r/haskell/comments/29eke6/basic_program_ideas_for_learning_about_monads/cik5trg
https://github.com/kqr/gists/blob/master/articles/gentle-introduction-monad-transformers.md
http://www.cs.virginia.edu/~wh5a/personal/Transformers.pdf
https://github.com/kazu-yamamoto/unit-test-example/blob/master/markdown/en/tutorial.md

• Simple-Conduit: Good simple library for learning how streaming IO works
in general, knowledge transferrable to libraries like Pipes and Conduit

Parsing in Haskell

• Parser combinator tutorial for Haskell using Parsec

• Writing your own micro-Parsec

Parsing and generating JSON

Aeson is the standard JSON parsing solution in haskell. Available from hackage
and github.

• Parsing JSON using Aeson

• Aeson and user created types

• Parsing non-deterministic data with aeson and sum types

• Aeson tutorial

Graph algorithms and data structures

• The fgl package particularly the purely functional shortest path algos.

• Inductive graphs and Functional Graph Algorithms.

• FGL/Haskell - A Functional Graph Library.

• Data.Graph source from Containers package.

• The graphs package.

• SO question about PHOAS

• PHOAS for free.

15

https://github.com/jwiegley/simple-conduit
https://github.com/JakeWheat/intro_to_parsing
http://olenhad.me/articles/monadic-parsers/
https://json.org
https://hackage.haskell.org/package/aeson
https://github.com/bos/aeson
http://blog.raynes.me/blog/2012/11/27/easy-json-parsing-in-haskell-with-aeson/
http://bitemyapp.com/posts/2014-04-11-aeson-and-user-created-types.html
http://bitemyapp.com/posts/2014-04-17-parsing-nondeterministic-data-with-aeson-and-sum-types.html
https://www.fpcomplete.com/school/starting-with-haskell/libraries-and-frameworks/text-manipulation/json
https://hackage.haskell.org/package/fgl
http://hackage.haskell.org/package/fgl-5.4.2.2/docs/Data-Graph-Inductive-Query-SP.html
http://web.engr.oregonstate.edu/~erwig/papers/abstracts.html#JFP01
http://web.engr.oregonstate.edu/~erwig/fgl/haskell/old/fgl0103.pdf
http://hackage.haskell.org/package/containers-0.5.5.1/docs/Data-Graph.html
https://hackage.haskell.org/package/graphs
http://stackoverflow.com/questions/24369954/separate-positive-and-negative-occurrences-of-phoas-variables-in-presence-of-rec
https://www.fpcomplete.com/user/edwardk/phoas

• Tying the Knot.

• Hackage: dag.

Development Environment

Emacs

• Alejandro Serras’s tutorial

• My dotfiles

• Chris Done’s emacs config

Vim

• Vim page on haskellwiki

• Haskell-vim-now

• A vim+haskell workflow

• GHC-Mod

• GHC-Mod vim plugin

• Hindent

Sublime Text

• SublimeHaskell

16

http://www.haskell.org/haskellwiki/Tying_the_Knot
https://hackage.haskell.org/package/dag
https://github.com/serras/emacs-haskell-tutorial/blob/master/tutorial.md
https://github.com/bitemyapp/dotfiles/
https://github.com/chrisdone/chrisdone-emacs
http://www.haskell.org/haskellwiki/Vim
https://github.com/begriffs/haskell-vim-now
http://www.stephendiehl.com/posts/vim_haskell.html
https://github.com/kazu-yamamoto/ghc-mod
https://github.com/eagletmt/ghcmod-vim
https://github.com/chrisdone/hindent
https://github.com/SublimeHaskell/SublimeHaskell

FAQ and working with Cabal

Fantastic FAQ

In addition to being an amazing guide for all kinds of things such as GADTs, this
also covers some useful basics for Cabal

• What I wish I knew when learning Haskell also on github here.

Cabal guidelines

Cabal Hell was a problem for Haskell users before the introduction of sandboxes.
Installing outside of a sandbox will install into your user package-db. This is not a
good idea except for foundational packages like Cabal, alex, and happy. Nothing
else should be installed in the user or global package-dbs unless you know what
you’re doing.

Some best practices for avoiding cabal hell are available here.

To experiment with a package or start a project, begin by doing cabal sandbox
init in a new directory.

Put briefly:

• Always use sandboxes for installing new packages, building new or existing
projects, or starting experiments

• Use cabal repl to start a project-scoped ghci instance

The sandbox-based approach I suggest should avoid package-dependency problems,
but it’s incompatible with the way the Haskell Platform provides pre-built packages.
If you’re still learning Haskell and don’t understand how ghc-pkg and Cabal work,
avoid platform and instead use the install instructions earlier in the guide.

Stackage

For any users (usually Yesod users) that have build problems, consider Stackage.

17

http://dev.stephendiehl.com/hask/
https://github.com/sdiehl/wiwinwlh
http://softwaresimply.blogspot.com/2014/07/haskell-best-practices-for-avoiding.html

• A good summary of Stackage is here.

In the author’s opinion, Stackage is usually more useful than cabal freeze.

Hoogle and Haddock

Search code by type signature

The Hoogle search engine can search by type.

For example, look at the search results for (a -> b) -> [a] -> [b] here.

Also hosted by fpcomplete here.

Also Hayoo (which has all of hackage enabled for search by default).

Setting up your own local instance of Hoogle

Take a look here.

Haddock

1. Fix your hackage documentation

2. Hackage documentation v2

Note that these posts are slightly out of date: for example, now Hackage sports
shiny new info with documentation info and build status.

What you really need to know

In order to have haddocks include documentation for related packages, you have
to set documentation: True in your ~/.cabal/config. If it was left on the
default (False) or set to False, you’ll have to delete all your packages and
reinstall before generating haddocks.

18

https://www.fpcomplete.com/blog/2014/05/stackage-server
http://www.haskell.org/hoogle/
http://www.haskell.org/hoogle/?hoogle=%28a+-%3E+b%29+-%3E+%5ba%5d+-%3E+%5bb%5d
https://www.fpcomplete.com/hoogle
http://holumbus.fh-wedel.de/hayoo/hayoo.html
https://gist.github.com/bitemyapp/3e6a015760775e0679bf
http://fuuzetsu.co.uk/blog/posts/2014-01-06-Fix-your-Hackage-documentation.html
http://fuuzetsu.co.uk/blog/posts/2014-01-06-Hackage-documentation-v2.html

The other thing to keep in mind is that due to the way the $pkg parameter gets
interpolated by cabal, not by you, the html-location and content-location
parameters must be in single quotes and entered into a shell or contained in a
shell script. They will not work in a Makefile, because it will think they are Make
variables!

#! /usr/bin/env sh

You can write it one one line by skipping the backslashes
cabal haddock --hoogle --hyperlink-source \
--html-location='http://hackage.haskell.org/package/$pkg/docs' \
--contents-location='http://hackage.haskell.org/package/$pkg'

TravisCI

If you’re as big a fan of TravisCI as I am, then I strongly recommend you take
a look at multi-ghc-travis by as the basis of the travis.yml for your Haskell
projects.

Frontend/JavaScript

We have an embarrassment of riches! There are three main choices I would
recommend:

• Haste a Haskell to JavaScript compiler

• The compiler on github.

• An excellent demo of Haste with an example project.

• GHCJS

• GHCJS Introduction

• Functional Reactive Web Interfaces with GHCJS and Sodium

19

https://travis-ci.org
https://github.com/hvr/multi-ghc-travis
http://haste-lang.org/
https://github.com/valderman/haste-compiler
http://www.airpair.com/haskell/posts/haskell-tutorial-introduction-to-web-apps
https://github.com/ghcjs/ghcjs
http://weblog.luite.com/wordpress/?p=14
http://weblog.luite.com/wordpress/?p=127

• PureScript

• Not strictly Haskell like Haste and GHCJS, but a popular choice among
Haskellers

• Written in and inspired by haskell

• Try purescript in you browser here

• Great guide for getting started

Which frontend language do I use?

GHCJS and Haste are both fully Haskell. GHCJS will work with more Haskell
packages than Haste, but this doesn’t affect a lot of frontend projects. PureScript
isn’t Haskell at all, so direct code sharing with your backend will not work.

GHCJS has the fattest runtime payload overhead at about 100kb (luite is working
on this). Haste and PureScript are competitive.

PureScript has the best JS tooling integration (uses gulp/grunt/bower), GHCJS
and Haste integrate better with Haskell’s tooling (Cabal).

All three are great choices and will work for most frontend projects.

For a more thorough understanding of laziness,
NF, WHNF

• Notes on lambda calculus.

Research papers about lazy lambda calculi

• A call by need lambda calculus.

• Demonstrating Lambda Calculus Reduction

• The lazy lambda calculus.

• Lazy evaluation of Haskell

20

http://www.purescript.org/
http://try.purescript.org/
http://www.christopherbiscardi.com/2014/06/22/getting-started-with-purescript/
https://vec.io/posts/notes-on-lambda-calculus
http://homepages.inf.ed.ac.uk/wadler/topics/call-by-need.html#need-journal
http://www.itu.dk/~sestoft/papers/sestoft-lamreduce.pdf
http://www.cs.ox.ac.uk/files/293/lazy.pdf
http://www.vex.net/~trebla/haskell/lazy.xhtlm

Parallelism/Concurrency

• Parallel and Concurrent Programming in Haskell. This book by Simon
Marlow is probably the best I’ve ever read on the topics of Parallelism and
Concurrency.

• A thorough walk-through on testing & incremental development of a multi-
threaded application in Haskell.

• Functional Reactive Programming

Lenses and Prisms

After you’re comfortable with Haskell, strongly consider learning Lenses and
Prisms, even if just as a “user”. You don’t need to understand the underlying
category for it to be useful.

People vastly overestimate the difficulty of using Lens. Anybody comfortable with
Functor/Foldable/Traversable (or even just the first one) can leverage lenses and
prisms to make their life happier.

If you’ve ever done something like: (fmap . fmap) you were “lensing” in your
head.

I recommend these two tutorials/introductions:

• A little lens starter tutorial

• Lens: Lenses, Folds and Traversals

Look here for more information: Lens package on hackage.

Recursion Schemes

Some of the crazy *-morphism words you’ve heard are actually about recursion.
NB - before tackling this material you should know how to implement foldr for lists
and at least one other data structure, such as a tree. (folds are catamorphisms)

21

http://chimera.labs.oreilly.com/books/1230000000929
http://kukuruku.co/hub/haskell/haskell-testing-a-multithread-application
http://www.haskell.org/haskellwiki/Functional_Reactive_Programming
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
https://github.com/ekmett/lens#lens-lenses-folds-and-traversals
http://hackage.haskell.org/package/lens

Knowing how to implement an unfold (anamorphism) for the same will round
things out a bit.

This material dovetails with traversable and foldable.

• An introduction to recursion schemes

• Don’t fear the cat - Good demonstration of how hylomorphism is the
composition of cata and ana.

• Recursion Schemes - This field guide is excellent.

• Functional Programming with Bananas, Lenses, Envelopes and Barbed Wire

• Catamorphisms

GHC Core and performance tuning

• Write Haskell as Fast as C

• GHC Wiki: CoreSyn Type.

• Hackage: GHC Core.

• SO Question: Reading GHC Core.

• Haskell as fast as C.

• Real World Haskell, Chapter 25: Profiling and Optimizations.

Graph algorithms and data structures

• The fgl package particularly the purely functional shortest path algos.

• Inductive graphs and Functional Graph Algorithms.

• FGL/Haskell - A Functional Graph Library.

• Data.Graph source from Containers package.

22

http://patrickthomson.ghost.io/an-introduction-to-recursion-schemes/
http://fho.f12n.de/posts/2014-05-07-dont-fear-the-cat.html
http://comonad.com/reader/2009/recursion-schemes/
http://eprints.eemcs.utwente.nl/7281/01/db-utwente-40501F46.pdf
https://www.fpcomplete.com/user/edwardk/recursion-schemes/catamorphisms
write_haskell_as_fast_as_c.md
https://ghc.haskell.org/trac/ghc/wiki/Commentary/Compiler/CoreSynType
https://hackage.haskell.org/package/ghc-core
http://stackoverflow.com/questions/6121146/reading-ghc-core
http://donsbot.wordpress.com/2008/06/04/haskell-as-fast-as-c-working-at-a-high-altitude-for-low-level-performance/
http://book.realworldhaskell.org/read/profiling-and-optimization.html
https://hackage.haskell.org/package/fgl
http://hackage.haskell.org/package/fgl-5.4.2.2/docs/Data-Graph-Inductive-Query-SP.html
http://web.engr.oregonstate.edu/~erwig/papers/abstracts.html#JFP01
http://web.engr.oregonstate.edu/~erwig/fgl/haskell/old/fgl0103.pdf
http://hackage.haskell.org/package/containers-0.5.5.1/docs/Data-Graph.html

• The graphs package.

• SO question about PHOAS

• PHOAS for free.

• Tying the Knot.

• Hackage: dag.

Type and Category Theory

Not needed to actually write Haskell, just for those interested!

If you want to follow up on type and category theory:

• Catster’s Guide and Catster’s Guide 2

• The haskell wikibook has nice diagrams

• Category Theory on haskellwiki, also has good links to other resources

• Categories from scratch, Includes some practical examples.

• Pierce’s Great Works in PL list.

Books

• Quora Question: What is the best textbook for category theory? Kmett’s
recommendations

• Awodey and MacLane. The standard textbooks on category theory.

• Harper’s Practical Foundations for Programming Languages is the best PL
focused intro to type theory I’ve read.

• Type theory and Functional Programming.

23

https://hackage.haskell.org/package/graphs
http://stackoverflow.com/questions/24369954/separate-positive-and-negative-occurrences-of-phoas-variables-in-presence-of-rec
https://www.fpcomplete.com/user/edwardk/phoas
http://www.haskell.org/haskellwiki/Tying_the_Knot
https://hackage.haskell.org/package/dag
http://byorgey.wordpress.com/2014/01/14/catsters-guide/
http://byorgey.wordpress.com/catsters-guide-2/
http://en.wikibooks.org/wiki/Haskell/Category_theory
http://www.haskell.org/haskellwiki/Category_theory
http://science.raphael.poss.name/categories-from-scratch.html
http://www.cis.upenn.edu/~bcpierce/courses/670Fall04/GreatWorksInPL.shtml
http://www.quora.com/Category-Theory/What-is-the-best-textbook-for-Category-theory?share=1
http://ukcatalogue.oup.com/product/9780199237180.do
http://www.amazon.com/Categories-Working-Mathematician-Graduate-Mathematics/dp/0387984038
http://www.cs.cmu.edu/~rwh/plbook/book.pdf
http://www.cs.kent.ac.uk/people/staff/sjt/TTFP/

Stephen’s Nifty “How to get to monad” posts

• Adjunctions.

• Monads.

Other theoretical topics

Parametricity, ad-hoc vs. parametric polymorphism, free
theorems

• Parametricity.

• TeX sources for the above talk.

• Making ad-hoc polymorphism less ad-hoc.

• Theorems for Free!.

Initial and Final, DSLs, Finally Tagless

• Final Encodings, Part 1: A Quick Demonstration.

• Transforming Polymorphic Values.

• GADTs in Haskell 98.

• Typed Tagless-Final Linear Lambda Calculus.

• Typed tagless-final interpretations: Lecture notes.

• Typed Tagless Final Interpreters.

• The dog that didn’t bark less specifically relevant but interesting.

24

http://www.stephendiehl.com/posts/adjunctions.html
http://www.stephendiehl.com/posts/monads.html
https://github.com/tonymorris/parametricity/
http://swizec.com/blog/week-20-making-ad-hoc-polymorphism-less-ad-hoc/swizec/6564
http://ttic.uchicago.edu/~dreyer/course/papers/wadler.pdf
http://creativelad.wordpress.com/2013/11/28/final-encodings-part-1-a-quick-demonstration/
http://martijn.van.steenbergen.nl/journal/2009/10/18/transforming-polymorphic-values/
http://martijn.van.steenbergen.nl/journal/2009/11/12/gadts-in-haskell-98/
https://www.fpcomplete.com/user/mutjida/typed-tagless-final-linear-lambda-calculus
http://okmij.org/ftp/tagless-final/course/course.html
http://okmij.org/ftp/tagless-final/course/lecture.pdf
http://existentialtype.wordpress.com/2011/03/21/the-dog-that-didnt-bark/

Comonads

• Comonads in Haskell.

• SO question: Can a Monad be a Comonad.

Yoneda / CoYoneda

• SO question: Step-by-step explanation of coyoneda.

• Free monads for Less, a sequence of three articles by Edward Kmett

• Part 1: Codensity.

• Part 2: Yoneda.

• Part 3: Yielding IO.

Propositions vs. Judgments (computation)

• StackExchange question: What is the difference between propositions and
judgements.

• Lecture notes from a short, three lecture course

Dependent typing

• Grokking sum types, value constructors, and type constructors squint hard.

• Lightweight Dependent-type Programming.

• Idris programming language.

Extended Reading list

Some are already included here

• Essential Haskell Reading List

25

https://speakerdeck.com/dmoverton/comonads-in-haskell
http://stackoverflow.com/questions/16551734/can-a-monad-be-a-comonad
http://stackoverflow.com/questions/24000465/step-by-step-deep-explain-the-power-of-coyoneda-preferably-in-scala-throu
http://comonad.com/reader/2011/free-monads-for-less/
http://comonad.com/reader/2011/free-monads-for-less-2/
http://comonad.com/reader/2011/free-monads-for-less-3/
http://cstheory.stackexchange.com/questions/9826/what-is-the-difference-between-propositions-and-judgments
http://cstheory.stackexchange.com/questions/9826/what-is-the-difference-between-propositions-and-judgments
http://www.ae-info.org/attach/User/Martin-L%C3%B6f_Per/OtherInformation/article.pdf
http://bitemyapp.com/posts/2014-04-05-grokking-sums-and-constructors.html
http://okmij.org/ftp/Computation/lightweight-dependent-typing.html
http://www.idris-lang.org/
http://www.stephendiehl.com/posts/essential_haskell.html

Dialogues

Hosted in this repository here.

These are actually pretty important and helpful. Look here for deep dives on a
variety of topics.

26

dialogues.md

	The Guide
	Community
	Community Guidelines

	What are Haskell, GHC, and Cabal?
	GHC
	Cabal

	Getting set-up
	Ubuntu
	Debian
	GHC Repository for debian stable
	Using Ubuntu PPA
	Manual compilation

	Fedora 21
	Arch Linux
	Gentoo
	Mac OS X
	10.9
	10.6-10.8

	Windows
	Other Linux users

	Primary Courses
	Yorgey's cis194 course
	NICTA course
	Supplementary Course cs240h
	Reference material for the three courses
	What does that <- / do / list comprehension syntactic sugar do?
	For understanding list and fold
	For learning some common typeclasses
	Understanding basic Haskell error messages

	Laziness, strictness, guarded recursion
	Brief demonstration

	IO
	Monads and monad transformers
	Monad transformers

	Testing, tests, specs, generative/property testing
	Parsing in Haskell
	Parsing and generating JSON

	Graph algorithms and data structures
	Development Environment
	Emacs
	Vim
	Sublime Text

	FAQ and working with Cabal
	Fantastic FAQ
	Cabal guidelines
	Stackage

	Hoogle and Haddock
	Search code by type signature
	Setting up your own local instance of Hoogle
	Haddock
	What you really need to know

	TravisCI
	Frontend/JavaScript
	Which frontend language do I use?

	For a more thorough understanding of laziness, NF, WHNF
	Research papers about lazy lambda calculi

	Parallelism/Concurrency
	Lenses and Prisms
	Recursion Schemes
	GHC Core and performance tuning
	Graph algorithms and data structures

	Type and Category Theory
	Books
	Stephen's Nifty How to get to monad posts

	Other theoretical topics
	Parametricity, ad-hoc vs. parametric polymorphism, free theorems
	Initial and Final, DSLs, Finally Tagless
	Comonads
	Yoneda / CoYoneda
	Propositions vs. Judgments (computation)

	Dependent typing
	Extended Reading list
	Dialogues

