You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
learn-wgpu/code/beginner/tutorial4-buffer/src/challenge.rs

363 lines
12 KiB
Rust

use std::iter;
use wgpu::util::DeviceExt;
use winit::{
event::*,
event_loop::{ControlFlow, EventLoop},
window::{Window, WindowBuilder},
};
#[repr(C)]
#[derive(Copy, Clone, Debug)]
struct Vertex {
position: [f32; 3],
color: [f32; 3],
}
unsafe impl bytemuck::Pod for Vertex {}
unsafe impl bytemuck::Zeroable for Vertex {}
impl Vertex {
fn desc<'a>() -> wgpu::VertexBufferDescriptor<'a> {
wgpu::VertexBufferDescriptor {
stride: std::mem::size_of::<Vertex>() as wgpu::BufferAddress,
step_mode: wgpu::InputStepMode::Vertex,
attributes: &[
wgpu::VertexAttributeDescriptor {
offset: 0,
shader_location: 0,
format: wgpu::VertexFormat::Float3,
},
wgpu::VertexAttributeDescriptor {
offset: std::mem::size_of::<[f32; 3]>() as wgpu::BufferAddress,
shader_location: 1,
format: wgpu::VertexFormat::Float3,
},
],
}
}
}
const VERTICES: &[Vertex] = &[
Vertex {
position: [-0.0868241, 0.49240386, 0.0],
color: [0.5, 0.0, 0.5],
}, // A
Vertex {
position: [-0.49513406, 0.06958647, 0.0],
color: [0.5, 0.0, 0.5],
}, // B
Vertex {
position: [-0.21918549, -0.44939706, 0.0],
color: [0.5, 0.0, 0.5],
}, // C
Vertex {
position: [0.35966998, -0.3473291, 0.0],
color: [0.5, 0.0, 0.5],
}, // D
Vertex {
position: [0.44147372, 0.2347359, 0.0],
color: [0.5, 0.0, 0.5],
}, // E
];
const INDICES: &[u16] = &[0, 1, 4, 1, 2, 4, 2, 3, 4];
struct State {
surface: wgpu::Surface,
device: wgpu::Device,
queue: wgpu::Queue,
sc_desc: wgpu::SwapChainDescriptor,
swap_chain: wgpu::SwapChain,
render_pipeline: wgpu::RenderPipeline,
vertex_buffer: wgpu::Buffer,
index_buffer: wgpu::Buffer,
num_indices: u32,
challenge_vertex_buffer: wgpu::Buffer,
challenge_index_buffer: wgpu::Buffer,
num_challenge_indices: u32,
use_complex: bool,
size: winit::dpi::PhysicalSize<u32>,
}
impl State {
async fn new(window: &Window) -> Self {
let size = window.inner_size();
// The instance is a handle to our GPU
// BackendBit::PRIMARY => Vulkan + Metal + DX12 + Browser WebGPU
let instance = wgpu::Instance::new(wgpu::BackendBit::PRIMARY);
let surface = unsafe { instance.create_surface(window) };
let adapter = instance
.request_adapter(&wgpu::RequestAdapterOptions {
power_preference: wgpu::PowerPreference::Default,
compatible_surface: Some(&surface),
})
.await
.unwrap();
let (device, queue) = adapter
.request_device(
&wgpu::DeviceDescriptor {
features: wgpu::Features::empty(),
limits: wgpu::Limits::default(),
shader_validation: true,
},
None, // Trace path
)
.await
.unwrap();
let sc_desc = wgpu::SwapChainDescriptor {
usage: wgpu::TextureUsage::OUTPUT_ATTACHMENT,
format: wgpu::TextureFormat::Bgra8UnormSrgb,
width: size.width,
height: size.height,
present_mode: wgpu::PresentMode::Fifo,
};
let swap_chain = device.create_swap_chain(&surface, &sc_desc);
let vs_module = device.create_shader_module(wgpu::include_spirv!("shader.vert.spv"));
let fs_module = device.create_shader_module(wgpu::include_spirv!("shader.frag.spv"));
let render_pipeline_layout =
device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("Render Pipeline Layout"),
bind_group_layouts: &[],
push_constant_ranges: &[],
});
let render_pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("Render Pipeline"),
layout: Some(&render_pipeline_layout),
vertex_stage: wgpu::ProgrammableStageDescriptor {
module: &vs_module,
entry_point: "main",
},
fragment_stage: Some(wgpu::ProgrammableStageDescriptor {
module: &fs_module,
entry_point: "main",
}),
rasterization_state: Some(wgpu::RasterizationStateDescriptor {
front_face: wgpu::FrontFace::Ccw,
cull_mode: wgpu::CullMode::Back,
depth_bias: 0,
depth_bias_slope_scale: 0.0,
depth_bias_clamp: 0.0,
clamp_depth: false,
}),
primitive_topology: wgpu::PrimitiveTopology::TriangleList,
color_states: &[wgpu::ColorStateDescriptor {
format: sc_desc.format,
color_blend: wgpu::BlendDescriptor::REPLACE,
alpha_blend: wgpu::BlendDescriptor::REPLACE,
write_mask: wgpu::ColorWrite::ALL,
}],
depth_stencil_state: None,
vertex_state: wgpu::VertexStateDescriptor {
index_format: wgpu::IndexFormat::Uint16,
vertex_buffers: &[Vertex::desc()],
},
sample_count: 1,
sample_mask: !0,
alpha_to_coverage_enabled: false,
});
let vertex_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Vertex Buffer"),
contents: bytemuck::cast_slice(VERTICES),
usage: wgpu::BufferUsage::VERTEX,
});
let index_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Index Buffer"),
contents: bytemuck::cast_slice(INDICES),
usage: wgpu::BufferUsage::INDEX,
});
let num_indices = INDICES.len() as u32;
let num_vertices = 16;
let angle = std::f32::consts::PI * 2.0 / num_vertices as f32;
let challenge_verts = (0..num_vertices)
.map(|i| {
let theta = angle * i as f32;
Vertex {
position: [0.5 * theta.cos(), -0.5 * theta.sin(), 0.0],
color: [(1.0 + theta.cos()) / 2.0, (1.0 + theta.sin()) / 2.0, 1.0],
}
})
.collect::<Vec<_>>();
let num_triangles = num_vertices - 2;
let challenge_indices = (1u16..num_triangles + 1)
.into_iter()
.flat_map(|i| vec![i + 1, i, 0])
.collect::<Vec<_>>();
let num_challenge_indices = challenge_indices.len() as u32;
let challenge_vertex_buffer =
device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Challenge Vertex Buffer"),
contents: bytemuck::cast_slice(&challenge_verts),
usage: wgpu::BufferUsage::VERTEX,
});
let challenge_index_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Challenge Index Buffer"),
contents: bytemuck::cast_slice(&challenge_indices),
usage: wgpu::BufferUsage::INDEX,
});
let use_complex = false;
Self {
surface,
device,
queue,
sc_desc,
swap_chain,
render_pipeline,
vertex_buffer,
index_buffer,
num_indices,
challenge_vertex_buffer,
challenge_index_buffer,
num_challenge_indices,
use_complex,
size,
}
}
fn resize(&mut self, new_size: winit::dpi::PhysicalSize<u32>) {
self.size = new_size;
self.sc_desc.width = new_size.width;
self.sc_desc.height = new_size.height;
self.swap_chain = self.device.create_swap_chain(&self.surface, &self.sc_desc);
}
fn input(&mut self, event: &WindowEvent) -> bool {
match event {
WindowEvent::KeyboardInput {
input:
KeyboardInput {
state,
virtual_keycode: Some(VirtualKeyCode::Space),
..
},
..
} => {
self.use_complex = *state == ElementState::Pressed;
true
}
_ => false,
}
}
fn update(&mut self) {}
fn render(&mut self) {
let frame = self
.swap_chain
.get_current_frame()
.expect("Timeout getting texture")
.output;
let mut encoder = self
.device
.create_command_encoder(&wgpu::CommandEncoderDescriptor {
label: Some("Render Encoder"),
});
{
let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
color_attachments: &[wgpu::RenderPassColorAttachmentDescriptor {
attachment: &frame.view,
resolve_target: None,
ops: wgpu::Operations {
load: wgpu::LoadOp::Clear(wgpu::Color {
r: 0.1,
g: 0.2,
b: 0.3,
a: 1.0,
}),
store: true,
},
}],
depth_stencil_attachment: None,
});
render_pass.set_pipeline(&self.render_pipeline);
let data = if self.use_complex {
(
&self.challenge_vertex_buffer,
&self.challenge_index_buffer,
self.num_challenge_indices,
)
} else {
(&self.vertex_buffer, &self.index_buffer, self.num_indices)
};
render_pass.set_vertex_buffer(0, data.0.slice(..));
render_pass.set_index_buffer(data.1.slice(..));
render_pass.draw_indexed(0..data.2, 0, 0..1);
}
self.queue.submit(iter::once(encoder.finish()));
}
}
fn main() {
env_logger::init();
let event_loop = EventLoop::new();
let window = WindowBuilder::new().build(&event_loop).unwrap();
use futures::executor::block_on;
// Since main can't be async, we're going to need to block
let mut state = block_on(State::new(&window));
event_loop.run(move |event, _, control_flow| {
match event {
Event::WindowEvent {
ref event,
window_id,
} if window_id == window.id() => {
if !state.input(event) {
match event {
WindowEvent::CloseRequested => *control_flow = ControlFlow::Exit,
WindowEvent::KeyboardInput { input, .. } => match input {
KeyboardInput {
state: ElementState::Pressed,
virtual_keycode: Some(VirtualKeyCode::Escape),
..
} => *control_flow = ControlFlow::Exit,
_ => {}
},
WindowEvent::Resized(physical_size) => {
state.resize(*physical_size);
}
WindowEvent::ScaleFactorChanged { new_inner_size, .. } => {
// new_inner_size is &mut so w have to dereference it twice
state.resize(**new_inner_size);
}
_ => {}
}
}
}
Event::RedrawRequested(_) => {
state.update();
state.render();
}
Event::MainEventsCleared => {
// RedrawRequested will only trigger once, unless we manually
// request it.
window.request_redraw();
}
_ => {}
}
});
}