You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
learn-wgpu/code/intermediate/tutorial13-hdr/src/resources.rs

373 lines
14 KiB
Rust

use std::io::{BufReader, Cursor};
use cfg_if::cfg_if;
use image::codecs::hdr::HdrDecoder;
use wgpu::util::DeviceExt;
use crate::{model, texture};
#[cfg(target_arch = "wasm32")]
fn format_url(file_name: &str) -> reqwest::Url {
let window = web_sys::window().unwrap();
let location = window.location();
let mut origin = location.origin().unwrap();
if !origin.ends_with("learn-wgpu") {
origin = format!("{}/learn-wgpu", origin);
}
let base = reqwest::Url::parse(&format!("{}/", origin,)).unwrap();
base.join(file_name).unwrap()
}
pub async fn load_string(file_name: &str) -> anyhow::Result<String> {
cfg_if! {
if #[cfg(target_arch = "wasm32")] {
let url = format_url(file_name);
let txt = reqwest::get(url)
.await?
.text()
.await?;
} else {
let path = std::path::Path::new(env!("OUT_DIR"))
.join("res")
.join(file_name);
let txt = std::fs::read_to_string(path)?;
}
}
Ok(txt)
}
pub async fn load_binary(file_name: &str) -> anyhow::Result<Vec<u8>> {
cfg_if! {
if #[cfg(target_arch = "wasm32")] {
let url = format_url(file_name);
let data = reqwest::get(url)
.await?
.bytes()
.await?
.to_vec();
} else {
let path = std::path::Path::new(env!("OUT_DIR"))
.join("res")
.join(file_name);
let data = std::fs::read(path)?;
}
}
Ok(data)
}
pub async fn load_texture(
file_name: &str,
is_normal_map: bool,
device: &wgpu::Device,
queue: &wgpu::Queue,
) -> anyhow::Result<texture::Texture> {
let data = load_binary(file_name).await?;
texture::Texture::from_bytes(device, queue, &data, file_name, is_normal_map)
}
pub async fn load_model(
file_name: &str,
device: &wgpu::Device,
queue: &wgpu::Queue,
layout: &wgpu::BindGroupLayout,
) -> anyhow::Result<model::Model> {
let obj_text = load_string(file_name).await?;
let obj_cursor = Cursor::new(obj_text);
let mut obj_reader = BufReader::new(obj_cursor);
let (models, obj_materials) = tobj::load_obj_buf_async(
&mut obj_reader,
&tobj::LoadOptions {
triangulate: true,
single_index: true,
..Default::default()
},
|p| async move {
let mat_text = load_string(&p).await.unwrap();
tobj::load_mtl_buf(&mut BufReader::new(Cursor::new(mat_text)))
},
)
.await?;
let mut materials = Vec::new();
for m in obj_materials? {
let diffuse_texture = load_texture(&m.diffuse_texture, false, device, queue).await?;
let normal_texture = load_texture(&m.normal_texture, true, device, queue).await?;
materials.push(model::Material::new(
device,
&m.name,
diffuse_texture,
normal_texture,
layout,
));
}
let meshes = models
.into_iter()
.map(|m| {
let mut vertices = (0..m.mesh.positions.len() / 3)
.map(|i| model::ModelVertex {
position: [
m.mesh.positions[i * 3],
m.mesh.positions[i * 3 + 1],
m.mesh.positions[i * 3 + 2],
],
tex_coords: [m.mesh.texcoords[i * 2], 1.0 - m.mesh.texcoords[i * 2 + 1]],
normal: [
m.mesh.normals[i * 3],
m.mesh.normals[i * 3 + 1],
m.mesh.normals[i * 3 + 2],
],
// We'll calculate these later
tangent: [0.0; 3],
bitangent: [0.0; 3],
})
.collect::<Vec<_>>();
let indices = &m.mesh.indices;
let mut triangles_included = vec![0; vertices.len()];
// Calculate tangents and bitangets. We're going to
// use the triangles, so we need to loop through the
// indices in chunks of 3
for c in indices.chunks(3) {
let v0 = vertices[c[0] as usize];
let v1 = vertices[c[1] as usize];
let v2 = vertices[c[2] as usize];
let pos0: cgmath::Vector3<_> = v0.position.into();
let pos1: cgmath::Vector3<_> = v1.position.into();
let pos2: cgmath::Vector3<_> = v2.position.into();
let uv0: cgmath::Vector2<_> = v0.tex_coords.into();
let uv1: cgmath::Vector2<_> = v1.tex_coords.into();
let uv2: cgmath::Vector2<_> = v2.tex_coords.into();
// Calculate the edges of the triangle
let delta_pos1 = pos1 - pos0;
let delta_pos2 = pos2 - pos0;
// This will give us a direction to calculate the
// tangent and bitangent
let delta_uv1 = uv1 - uv0;
let delta_uv2 = uv2 - uv0;
// Solving the following system of equations will
// give us the tangent and bitangent.
// delta_pos1 = delta_uv1.x * T + delta_u.y * B
// delta_pos2 = delta_uv2.x * T + delta_uv2.y * B
// Luckily, the place I found this equation provided
// the solution!
let r = 1.0 / (delta_uv1.x * delta_uv2.y - delta_uv1.y * delta_uv2.x);
let tangent = (delta_pos1 * delta_uv2.y - delta_pos2 * delta_uv1.y) * r;
// We flip the bitangent to enable right-handed normal
// maps with wgpu texture coordinate system
let bitangent = (delta_pos2 * delta_uv1.x - delta_pos1 * delta_uv2.x) * -r;
// We'll use the same tangent/bitangent for each vertex in the triangle
vertices[c[0] as usize].tangent =
(tangent + cgmath::Vector3::from(vertices[c[0] as usize].tangent)).into();
vertices[c[1] as usize].tangent =
(tangent + cgmath::Vector3::from(vertices[c[1] as usize].tangent)).into();
vertices[c[2] as usize].tangent =
(tangent + cgmath::Vector3::from(vertices[c[2] as usize].tangent)).into();
vertices[c[0] as usize].bitangent =
(bitangent + cgmath::Vector3::from(vertices[c[0] as usize].bitangent)).into();
vertices[c[1] as usize].bitangent =
(bitangent + cgmath::Vector3::from(vertices[c[1] as usize].bitangent)).into();
vertices[c[2] as usize].bitangent =
(bitangent + cgmath::Vector3::from(vertices[c[2] as usize].bitangent)).into();
// Used to average the tangents/bitangents
triangles_included[c[0] as usize] += 1;
triangles_included[c[1] as usize] += 1;
triangles_included[c[2] as usize] += 1;
}
// Average the tangents/bitangents
for (i, n) in triangles_included.into_iter().enumerate() {
let denom = 1.0 / n as f32;
let mut v = &mut vertices[i];
v.tangent = (cgmath::Vector3::from(v.tangent) * denom).into();
v.bitangent = (cgmath::Vector3::from(v.bitangent) * denom).into();
}
let vertex_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some(&format!("{:?} Vertex Buffer", file_name)),
contents: bytemuck::cast_slice(&vertices),
usage: wgpu::BufferUsages::VERTEX,
});
let index_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some(&format!("{:?} Index Buffer", file_name)),
contents: bytemuck::cast_slice(&m.mesh.indices),
usage: wgpu::BufferUsages::INDEX,
});
model::Mesh {
name: file_name.to_string(),
vertex_buffer,
index_buffer,
num_elements: m.mesh.indices.len() as u32,
material: m.mesh.material_id.unwrap_or(0),
}
})
.collect::<Vec<_>>();
Ok(model::Model { meshes, materials })
}
pub struct HdrLoader {
texture_format: wgpu::TextureFormat,
equirect_layout: wgpu::BindGroupLayout,
equirect_to_cubemap: wgpu::ComputePipeline,
}
impl HdrLoader {
pub fn new(device: &wgpu::Device) -> Self {
let module = device.create_shader_module(wgpu::include_wgsl!("equirectangular.wgsl"));
let texture_format = wgpu::TextureFormat::Rgba32Float;
let equirect_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
label: Some("HdrLoader::equirect_layout"),
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::COMPUTE,
ty: wgpu::BindingType::Texture {
sample_type: wgpu::TextureSampleType::Float { filterable: false },
view_dimension: wgpu::TextureViewDimension::D2,
multisampled: false,
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStages::COMPUTE,
ty: wgpu::BindingType::StorageTexture {
access: wgpu::StorageTextureAccess::WriteOnly,
format: texture_format,
view_dimension: wgpu::TextureViewDimension::D2Array,
},
count: None,
},
],
});
let pipeline_layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: None,
bind_group_layouts: &[&equirect_layout],
push_constant_ranges: &[],
});
let equirect_to_cubemap =
device.create_compute_pipeline(&wgpu::ComputePipelineDescriptor {
label: Some("equirect_to_cubemap"),
layout: Some(&pipeline_layout),
module: &module,
entry_point: "compute_equirect_to_cubemap",
});
Self {
equirect_to_cubemap,
texture_format,
equirect_layout,
}
}
pub fn from_equirectangular_bytes(
&self,
device: &wgpu::Device,
queue: &wgpu::Queue,
data: &[u8],
dst_size: u32,
label: Option<&str>,
) -> anyhow::Result<texture::CubeTexture> {
let hdr_decoder = HdrDecoder::new(Cursor::new(data))?;
let meta = hdr_decoder.metadata();
let mut pixels = vec![[0.0, 0.0, 0.0, 0.0]; meta.width as usize * meta.height as usize];
hdr_decoder.read_image_transform(
|pix| {
let rgb = pix.to_hdr();
[rgb.0[0], rgb.0[1], rgb.0[2], 1.0f32]
},
&mut pixels[..],
)?;
let src = texture::Texture::create_2d_texture(
device,
meta.width,
meta.height,
self.texture_format,
wgpu::TextureUsages::TEXTURE_BINDING | wgpu::TextureUsages::COPY_DST,
wgpu::FilterMode::Linear,
None,
);
queue.write_texture(
wgpu::ImageCopyTexture {
texture: &src.texture,
mip_level: 0,
origin: wgpu::Origin3d::ZERO,
aspect: wgpu::TextureAspect::All,
},
&bytemuck::cast_slice(&pixels),
wgpu::ImageDataLayout {
offset: 0,
bytes_per_row: Some(src.size.width * std::mem::size_of::<[f32; 4]>() as u32),
rows_per_image: Some(src.size.height),
},
src.size,
);
let dst = texture::CubeTexture::create_2d(
device,
dst_size,
dst_size,
self.texture_format,
1,
wgpu::TextureUsages::STORAGE_BINDING
| wgpu::TextureUsages::TEXTURE_BINDING,
wgpu::FilterMode::Nearest,
label,
);
let dst_view = dst.texture().create_view(&wgpu::TextureViewDescriptor {
label,
dimension: Some(wgpu::TextureViewDimension::D2Array),
// array_layer_count: Some(6),
..Default::default()
});
let bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
label,
layout: &self.equirect_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::TextureView(&src.view),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::TextureView(&dst_view),
},
],
});
let mut encoder = device.create_command_encoder(&Default::default());
let mut pass = encoder.begin_compute_pass(&wgpu::ComputePassDescriptor { label, timestamp_writes: None });
let num_workgroups = (dst_size + 15) / 16;
pass.set_pipeline(&self.equirect_to_cubemap);
pass.set_bind_group(0, &bind_group, &[]);
pass.dispatch_workgroups(num_workgroups, num_workgroups, 6);
drop(pass);
queue.submit([encoder.finish()]);
Ok(dst)
}
}