use winit::{ event::*, event_loop::{EventLoop, ControlFlow}, window::{Window, WindowBuilder}, }; #[repr(C)] #[derive(Copy, Clone, Debug)] struct Vertex { position: [f32; 3], tex_coords: [f32; 2], } impl Vertex { fn desc<'a>() -> wgpu::VertexBufferDescriptor<'a> { use std::mem; wgpu::VertexBufferDescriptor { stride: mem::size_of::() as wgpu::BufferAddress, step_mode: wgpu::InputStepMode::Vertex, attributes: &[ wgpu::VertexAttributeDescriptor { offset: 0, shader_location: 0, format: wgpu::VertexFormat::Float3, }, wgpu::VertexAttributeDescriptor { offset: mem::size_of::<[f32; 3]>() as wgpu::BufferAddress, shader_location: 1, format: wgpu::VertexFormat::Float2, }, ] } } } const VERTICES: &[Vertex] = &[ Vertex { position: [-0.0868241, -0.49240386, 0.0], tex_coords: [1.0 - 0.4131759, 1.0 - 0.00759614], }, // A Vertex { position: [-0.49513406, -0.06958647, 0.0], tex_coords: [1.0 - 0.0048659444, 1.0 - 0.43041354], }, // B Vertex { position: [-0.21918549, 0.44939706, 0.0], tex_coords: [1.0 - 0.28081453, 1.0 - 0.949397057], }, // C Vertex { position: [0.35966998, 0.3473291, 0.0], tex_coords: [1.0 - 0.85967, 1.0 - 0.84732911], }, // D Vertex { position: [0.44147372, -0.2347359, 0.0], tex_coords: [1.0 - 0.9414737, 1.0 - 0.2652641], }, // E ]; const INDICES: &[u16] = &[ 0, 1, 4, 1, 2, 4, 2, 3, 4, ]; #[cfg_attr(rustfmt, rustfmt_skip)] pub const OPENGL_TO_WGPU_MATRIX: cgmath::Matrix4 = cgmath::Matrix4::new( 1.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.5, 1.0, ); struct Camera { eye: cgmath::Point3, target: cgmath::Point3, up: cgmath::Vector3, aspect: f32, fovy: f32, znear: f32, zfar: f32, } impl Camera { fn build_view_projection_matrix(&self) -> cgmath::Matrix4 { let view = cgmath::Matrix4::look_at(self.eye, self.target, self.up); let proj = cgmath::perspective(cgmath::Deg(self.fovy), self.aspect, self.znear, self.zfar); return proj * view; } } struct UniformStaging { camera: Camera, model_rotation: cgmath::Deg, } impl UniformStaging { fn new(camera: Camera) -> Self { Self { camera, model_rotation: cgmath::Deg(0.0) } } fn update_uniforms(&self, uniforms: &mut Uniforms) { uniforms.model_view_proj = OPENGL_TO_WGPU_MATRIX * self.camera.build_view_projection_matrix() * cgmath::Matrix4::from_angle_z(self.model_rotation); } } #[repr(C)] #[derive(Debug, Copy, Clone)] struct Uniforms { model_view_proj: cgmath::Matrix4, } impl Uniforms { fn new() -> Self { use cgmath::SquareMatrix; Self { model_view_proj: cgmath::Matrix4::identity(), } } } struct CameraController { speed: f32, is_up_pressed: bool, is_down_pressed: bool, is_forward_pressed: bool, is_backward_pressed: bool, is_left_pressed: bool, is_right_pressed: bool, } impl CameraController { fn new(speed: f32) -> Self { Self { speed, is_up_pressed: false, is_down_pressed: false, is_forward_pressed: false, is_backward_pressed: false, is_left_pressed: false, is_right_pressed: false, } } fn process_events(&mut self, event: &WindowEvent) -> bool { match event { WindowEvent::KeyboardInput { input: KeyboardInput { state, virtual_keycode: Some(keycode), .. }, .. } => { let is_pressed = *state == ElementState::Pressed; match keycode { VirtualKeyCode::Space => { self.is_up_pressed = is_pressed; true } VirtualKeyCode::LShift => { self.is_down_pressed = is_pressed; true } VirtualKeyCode::W | VirtualKeyCode::Up => { self.is_forward_pressed = is_pressed; true } VirtualKeyCode::A | VirtualKeyCode::Left => { self.is_left_pressed = is_pressed; true } VirtualKeyCode::S | VirtualKeyCode::Down => { self.is_backward_pressed = is_pressed; true } VirtualKeyCode::D | VirtualKeyCode::Right => { self.is_right_pressed = is_pressed; true } _ => false, } } _ => false, } } fn update_camera(&self, camera: &mut Camera) { use cgmath::InnerSpace; let forward = (camera.target - camera.eye).normalize(); if self.is_forward_pressed { camera.eye += forward * self.speed; } if self.is_backward_pressed { camera.eye -= forward * self.speed; } let right = forward.cross(camera.up); if self.is_right_pressed { camera.eye += right * self.speed; } if self.is_left_pressed { camera.eye -= right * self.speed; } } } struct State { surface: wgpu::Surface, device: wgpu::Device, queue: wgpu::Queue, sc_desc: wgpu::SwapChainDescriptor, swap_chain: wgpu::SwapChain, render_pipeline: wgpu::RenderPipeline, vertex_buffer: wgpu::Buffer, index_buffer: wgpu::Buffer, num_indices: u32, diffuse_texture: wgpu::Texture, diffuse_texture_view: wgpu::TextureView, diffuse_sampler: wgpu::Sampler, diffuse_bind_group: wgpu::BindGroup, camera_controller: CameraController, uniforms: Uniforms, uniform_staging: UniformStaging, uniform_buffer: wgpu::Buffer, uniform_bind_group: wgpu::BindGroup, hidpi_factor: f64, size: winit::dpi::LogicalSize, } impl State { fn new(window: &Window) -> Self { let hidpi_factor = window.hidpi_factor(); let size = window.inner_size(); let physical_size = size.to_physical(hidpi_factor); let surface = wgpu::Surface::create(window); let adapter = wgpu::Adapter::request(&wgpu::RequestAdapterOptions { ..Default::default() }).unwrap(); let (device, mut queue) = adapter.request_device(&wgpu::DeviceDescriptor { extensions: wgpu::Extensions { anisotropic_filtering: false, }, limits: Default::default(), }); let sc_desc = wgpu::SwapChainDescriptor { usage: wgpu::TextureUsage::OUTPUT_ATTACHMENT, format: wgpu::TextureFormat::Bgra8UnormSrgb, width: physical_size.width.round() as u32, height: physical_size.height.round() as u32, present_mode: wgpu::PresentMode::Vsync, }; let swap_chain = device.create_swap_chain(&surface, &sc_desc); let diffuse_bytes = include_bytes!("happy-tree.png"); let diffuse_image = image::load_from_memory(diffuse_bytes).unwrap(); let diffuse_rgba = diffuse_image.as_rgba8().unwrap(); use image::GenericImageView; let dimensions = diffuse_image.dimensions(); let size3d = wgpu::Extent3d { width: dimensions.0, height: dimensions.1, depth: 1, }; let diffuse_texture = device.create_texture(&wgpu::TextureDescriptor { size: size3d, array_layer_count: 1, mip_level_count: 1, sample_count: 1, dimension: wgpu::TextureDimension::D2, format: wgpu::TextureFormat::Rgba8UnormSrgb, usage: wgpu::TextureUsage::SAMPLED | wgpu::TextureUsage::COPY_DST, }); let diffuse_buffer = device .create_buffer_mapped(diffuse_rgba.len(), wgpu::BufferUsage::COPY_SRC) .fill_from_slice(&diffuse_rgba); let mut encoder = device.create_command_encoder(&wgpu::CommandEncoderDescriptor { todo: 0, }); encoder.copy_buffer_to_texture( wgpu::BufferCopyView { buffer: &diffuse_buffer, offset: 0, row_pitch: 4 * dimensions.0, image_height: dimensions.1, }, wgpu::TextureCopyView { texture: &diffuse_texture, mip_level: 0, array_layer: 0, origin: wgpu::Origin3d::ZERO, }, size3d, ); queue.submit(&[encoder.finish()]); let diffuse_texture_view = diffuse_texture.create_default_view(); let diffuse_sampler = device.create_sampler(&wgpu::SamplerDescriptor { address_mode_u: wgpu::AddressMode::ClampToEdge, address_mode_v: wgpu::AddressMode::ClampToEdge, address_mode_w: wgpu::AddressMode::ClampToEdge, mag_filter: wgpu::FilterMode::Linear, min_filter: wgpu::FilterMode::Nearest, mipmap_filter: wgpu::FilterMode::Nearest, lod_min_clamp: -100.0, lod_max_clamp: 100.0, compare_function: wgpu::CompareFunction::Always, }); let texture_bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { bindings: &[ wgpu::BindGroupLayoutBinding { binding: 0, visibility: wgpu::ShaderStage::FRAGMENT, ty: wgpu::BindingType::SampledTexture { multisampled: false, dimension: wgpu::TextureViewDimension::D2, }, }, wgpu::BindGroupLayoutBinding { binding: 1, visibility: wgpu::ShaderStage::FRAGMENT, ty: wgpu::BindingType::Sampler, }, ], }); let diffuse_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor { layout: &texture_bind_group_layout, bindings: &[ wgpu::Binding { binding: 0, resource: wgpu::BindingResource::TextureView(&diffuse_texture_view), }, wgpu::Binding { binding: 1, resource: wgpu::BindingResource::Sampler(&diffuse_sampler), } ], }); let camera = Camera { eye: (0.0, 1.0, -2.0).into(), target: (0.0, 0.0, 0.0).into(), up: cgmath::Vector3::unit_y(), aspect: sc_desc.width as f32 / sc_desc.height as f32, fovy: 45.0, znear: 0.1, zfar: 100.0, }; let camera_controller = CameraController::new(0.2); let mut uniforms = Uniforms::new(); let uniform_staging = UniformStaging::new(camera); uniform_staging.update_uniforms(&mut uniforms); let uniform_buffer = device .create_buffer_mapped(1, wgpu::BufferUsage::UNIFORM | wgpu::BufferUsage::COPY_DST) .fill_from_slice(&[uniforms]); let uniform_bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { bindings: &[ wgpu::BindGroupLayoutBinding { binding: 0, visibility: wgpu::ShaderStage::VERTEX, ty: wgpu::BindingType::UniformBuffer { dynamic: false, }, } ] }); let uniform_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor { layout: &uniform_bind_group_layout, bindings: &[ wgpu::Binding { binding: 0, resource: wgpu::BindingResource::Buffer { buffer: &uniform_buffer, range: 0..std::mem::size_of_val(&uniforms) as wgpu::BufferAddress, } } ], }); let vs_src = include_str!("shader.vert"); let fs_src = include_str!("shader.frag"); let vs_spirv = glsl_to_spirv::compile(vs_src, glsl_to_spirv::ShaderType::Vertex).unwrap(); let fs_spirv = glsl_to_spirv::compile(fs_src, glsl_to_spirv::ShaderType::Fragment).unwrap(); let vs_data = wgpu::read_spirv(vs_spirv).unwrap(); let fs_data = wgpu::read_spirv(fs_spirv).unwrap(); let vs_module = device.create_shader_module(&vs_data); let fs_module = device.create_shader_module(&fs_data); let render_pipeline_layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor { bind_group_layouts: &[&texture_bind_group_layout, &uniform_bind_group_layout], }); let render_pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor { layout: &render_pipeline_layout, vertex_stage: wgpu::ProgrammableStageDescriptor { module: &vs_module, entry_point: "main", }, fragment_stage: Some(wgpu::ProgrammableStageDescriptor { module: &fs_module, entry_point: "main", }), rasterization_state: Some(wgpu::RasterizationStateDescriptor { front_face: wgpu::FrontFace::Ccw, cull_mode: wgpu::CullMode::Back, depth_bias: 0, depth_bias_slope_scale: 0.0, depth_bias_clamp: 0.0, }), primitive_topology: wgpu::PrimitiveTopology::TriangleList, color_states: &[ wgpu::ColorStateDescriptor { format: sc_desc.format, color_blend: wgpu::BlendDescriptor::REPLACE, alpha_blend: wgpu::BlendDescriptor::REPLACE, write_mask: wgpu::ColorWrite::ALL, }, ], depth_stencil_state: None, index_format: wgpu::IndexFormat::Uint16, vertex_buffers: &[ Vertex::desc(), ], sample_count: 1, sample_mask: !0, alpha_to_coverage_enabled: false, }); let vertex_buffer = device .create_buffer_mapped(VERTICES.len(), wgpu::BufferUsage::VERTEX) .fill_from_slice(VERTICES); let index_buffer = device .create_buffer_mapped(INDICES.len(), wgpu::BufferUsage::INDEX) .fill_from_slice(INDICES); let num_indices = INDICES.len() as u32; Self { surface, device, queue, sc_desc, swap_chain, render_pipeline, vertex_buffer, index_buffer, num_indices, diffuse_texture, diffuse_texture_view, diffuse_sampler, diffuse_bind_group, camera_controller, uniform_staging, uniform_buffer, uniform_bind_group, uniforms, hidpi_factor, size, } } fn update_hidpi_and_resize(&mut self, new_hidpi_factor: f64) { self.hidpi_factor = new_hidpi_factor; self.resize(self.size); } fn resize(&mut self, new_size: winit::dpi::LogicalSize) { let physical_size = new_size.to_physical(self.hidpi_factor); self.size = new_size; self.sc_desc.width = physical_size.width.round() as u32; self.sc_desc.height = physical_size.height.round() as u32; self.swap_chain = self.device.create_swap_chain(&self.surface, &self.sc_desc); self.uniform_staging.camera.aspect = self.sc_desc.width as f32 / self.sc_desc.height as f32; } fn input(&mut self, event: &WindowEvent) -> bool { self.camera_controller.process_events(event) } fn update(&mut self) { self.camera_controller.update_camera(&mut self.uniform_staging.camera); self.uniform_staging.model_rotation += cgmath::Deg(2.0); self.uniform_staging.update_uniforms(&mut self.uniforms); let mut encoder = self.device.create_command_encoder(&wgpu::CommandEncoderDescriptor { todo: 0, }); let staging_buffer = self.device .create_buffer_mapped(1, wgpu::BufferUsage::COPY_SRC) .fill_from_slice(&[self.uniforms]); encoder.copy_buffer_to_buffer(&staging_buffer, 0, &self.uniform_buffer, 0, std::mem::size_of::() as wgpu::BufferAddress); self.queue.submit(&[encoder.finish()]); } fn render(&mut self) { let frame = self.swap_chain.get_next_texture(); let mut encoder = self.device.create_command_encoder(&wgpu::CommandEncoderDescriptor { todo: 0, }); { let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor { color_attachments: &[ wgpu::RenderPassColorAttachmentDescriptor { attachment: &frame.view, resolve_target: None, load_op: wgpu::LoadOp::Clear, store_op: wgpu::StoreOp::Store, clear_color: wgpu::Color { r: 0.1, g: 0.2, b: 0.3, a: 1.0, }, } ], depth_stencil_attachment: None, }); render_pass.set_pipeline(&self.render_pipeline); render_pass.set_bind_group(0, &self.diffuse_bind_group, &[]); render_pass.set_bind_group(1, &self.uniform_bind_group, &[]); render_pass.set_vertex_buffers(0, &[(&self.vertex_buffer, 0)]); render_pass.set_index_buffer(&self.index_buffer, 0); render_pass.draw_indexed(0..self.num_indices, 0, 0..1); } self.queue.submit(&[ encoder.finish() ]); } } fn main() { let event_loop = EventLoop::new(); let window = WindowBuilder::new() .build(&event_loop) .unwrap(); let mut state = State::new(&window); let mut old_time = std::time::Instant::now(); const MSPT: std::time::Duration = std::time::Duration::from_millis(20); event_loop.run(move |event, _, control_flow| { match event { Event::WindowEvent { ref event, window_id, } if window_id == window.id() => if state.input(event) { () } else { match event { WindowEvent::CloseRequested => *control_flow = ControlFlow::Exit, WindowEvent::KeyboardInput { input, .. } => { match input { KeyboardInput { state: ElementState::Pressed, virtual_keycode: Some(VirtualKeyCode::Escape), .. } => *control_flow = ControlFlow::Exit, _ => (), } } WindowEvent::Resized(logical_size) => { state.resize(*logical_size); () } WindowEvent::HiDpiFactorChanged(new_hidpi_factor) => { state.update_hidpi_and_resize(*new_hidpi_factor); () } _ => (), } } Event::EventsCleared => { state.update(); state.render(); let new_time = std::time::Instant::now(); let delta_time = new_time - old_time; *control_flow = if delta_time > MSPT { ControlFlow::Poll } else { ControlFlow::WaitUntil(old_time + MSPT) }; old_time = new_time; } _ => (), } }); }