use cgmath::prelude::*; use futures::executor::block_on; use std::path::Path; use std::time::{Duration, Instant}; use winit::{ event::*, event_loop::{ControlFlow, EventLoop}, window::Window, }; mod model; mod pipeline; mod texture; use model::{DrawLight, DrawModel, Vertex}; #[rustfmt::skip] pub const OPENGL_TO_WGPU_MATRIX: cgmath::Matrix4 = cgmath::Matrix4::new( 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.5, 1.0, ); const NUM_INSTANCES_PER_ROW: u32 = 10; struct Camera { eye: cgmath::Point3, target: cgmath::Point3, up: cgmath::Vector3, aspect: f32, fovy: f32, znear: f32, zfar: f32, } impl Camera { fn build_view_projection_matrix(&self) -> cgmath::Matrix4 { let view = cgmath::Matrix4::look_at(self.eye, self.target, self.up); let proj = cgmath::perspective(cgmath::Deg(self.fovy), self.aspect, self.znear, self.zfar); proj * view } } #[repr(C)] #[derive(Copy, Clone)] struct Uniforms { view_position: cgmath::Vector4, view_proj: cgmath::Matrix4, } impl Uniforms { fn new() -> Self { Self { view_position: Zero::zero(), view_proj: cgmath::Matrix4::identity(), } } fn update_view_proj(&mut self, camera: &Camera) { self.view_position = camera.eye.to_homogeneous(); self.view_proj = OPENGL_TO_WGPU_MATRIX * camera.build_view_projection_matrix(); } } unsafe impl bytemuck::Zeroable for Uniforms {} unsafe impl bytemuck::Pod for Uniforms {} struct CameraController { speed: f32, is_up_pressed: bool, is_down_pressed: bool, is_forward_pressed: bool, is_backward_pressed: bool, is_left_pressed: bool, is_right_pressed: bool, } impl CameraController { fn new(speed: f32) -> Self { Self { speed, is_up_pressed: false, is_down_pressed: false, is_forward_pressed: false, is_backward_pressed: false, is_left_pressed: false, is_right_pressed: false, } } fn process_events(&mut self, event: &WindowEvent) -> bool { match event { WindowEvent::KeyboardInput { input: KeyboardInput { state, virtual_keycode: Some(keycode), .. }, .. } => { let is_pressed = *state == ElementState::Pressed; match keycode { VirtualKeyCode::Space => { self.is_up_pressed = is_pressed; true } VirtualKeyCode::LShift => { self.is_down_pressed = is_pressed; true } VirtualKeyCode::W | VirtualKeyCode::Up => { self.is_forward_pressed = is_pressed; true } VirtualKeyCode::A | VirtualKeyCode::Left => { self.is_left_pressed = is_pressed; true } VirtualKeyCode::S | VirtualKeyCode::Down => { self.is_backward_pressed = is_pressed; true } VirtualKeyCode::D | VirtualKeyCode::Right => { self.is_right_pressed = is_pressed; true } _ => false, } } _ => false, } } fn update_camera(&self, camera: &mut Camera) { let forward = camera.target - camera.eye; let forward_norm = forward.normalize(); let forward_mag = forward.magnitude(); // Prevents glitching when camera gets too close to the // center of the scene. if self.is_forward_pressed && forward_mag > self.speed { camera.eye += forward_norm * self.speed; } if self.is_backward_pressed { camera.eye -= forward_norm * self.speed; } let right = forward_norm.cross(camera.up); // Redo radius calc in case the up/ down is pressed. let forward = camera.target - camera.eye; let forward_mag = forward.magnitude(); if self.is_right_pressed { // Rescale the distance between the target and eye so // that it doesn't change. The eye therefore still // lies on the circle made by the target and eye. camera.eye = camera.target - (forward + right * self.speed).normalize() * forward_mag; } if self.is_left_pressed { camera.eye = camera.target - (forward - right * self.speed).normalize() * forward_mag; } } } struct Instance { position: cgmath::Vector3, rotation: cgmath::Quaternion, } impl Instance { fn to_raw(&self) -> InstanceRaw { InstanceRaw { model: cgmath::Matrix4::from_translation(self.position) * cgmath::Matrix4::from(self.rotation), } } } #[derive(Copy, Clone)] struct InstanceRaw { #[allow(dead_code)] model: cgmath::Matrix4, } unsafe impl bytemuck::Pod for InstanceRaw {} unsafe impl bytemuck::Zeroable for InstanceRaw {} #[repr(C)] #[derive(Debug, Copy, Clone)] struct Light { position: cgmath::Vector3, // Due to uniforms requiring 16 byte (4 float) spacing, we need to use a padding field here _padding: u32, color: cgmath::Vector3, } unsafe impl bytemuck::Zeroable for Light {} unsafe impl bytemuck::Pod for Light {} struct State { surface: wgpu::Surface, device: wgpu::Device, queue: wgpu::Queue, sc_desc: wgpu::SwapChainDescriptor, swap_chain: wgpu::SwapChain, render_pipeline: wgpu::RenderPipeline, obj_model: model::Model, camera: Camera, camera_controller: CameraController, uniforms: Uniforms, uniform_buffer: wgpu::Buffer, uniform_bind_group: wgpu::BindGroup, instances: Vec, #[allow(dead_code)] instance_buffer: wgpu::Buffer, depth_texture: texture::Texture, size: winit::dpi::PhysicalSize, light: Light, light_buffer: wgpu::Buffer, light_bind_group: wgpu::BindGroup, light_render_pipeline: wgpu::RenderPipeline, #[allow(dead_code)] debug_material: model::Material, } impl State { async fn new(window: &Window) -> Self { let size = window.inner_size(); let surface = wgpu::Surface::create(window); let adapter = wgpu::Adapter::request( &wgpu::RequestAdapterOptions { power_preference: wgpu::PowerPreference::Default, compatible_surface: Some(&surface), }, wgpu::BackendBit::PRIMARY, // Vulkan + Metal + DX12 + Browser WebGPU ) .await .unwrap(); let (device, queue) = adapter .request_device(&wgpu::DeviceDescriptor { extensions: wgpu::Extensions { anisotropic_filtering: false, }, limits: Default::default(), }) .await; let sc_desc = wgpu::SwapChainDescriptor { usage: wgpu::TextureUsage::OUTPUT_ATTACHMENT, format: wgpu::TextureFormat::Bgra8UnormSrgb, width: size.width, height: size.height, present_mode: wgpu::PresentMode::Fifo, }; let swap_chain = device.create_swap_chain(&surface, &sc_desc); let texture_bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { bindings: &[ wgpu::BindGroupLayoutEntry { binding: 0, visibility: wgpu::ShaderStage::FRAGMENT, ty: wgpu::BindingType::SampledTexture { multisampled: false, component_type: wgpu::TextureComponentType::Float, dimension: wgpu::TextureViewDimension::D2, }, }, wgpu::BindGroupLayoutEntry { binding: 1, visibility: wgpu::ShaderStage::FRAGMENT, ty: wgpu::BindingType::Sampler { comparison: false }, }, // normal map wgpu::BindGroupLayoutEntry { binding: 2, visibility: wgpu::ShaderStage::FRAGMENT, ty: wgpu::BindingType::SampledTexture { multisampled: false, component_type: wgpu::TextureComponentType::Float, dimension: wgpu::TextureViewDimension::D2, }, }, wgpu::BindGroupLayoutEntry { binding: 3, visibility: wgpu::ShaderStage::FRAGMENT, ty: wgpu::BindingType::Sampler { comparison: false }, }, ], label: None, }); let camera = Camera { eye: (0.0, 5.0, -10.0).into(), target: (0.0, 0.0, 0.0).into(), up: cgmath::Vector3::unit_y(), aspect: sc_desc.width as f32 / sc_desc.height as f32, fovy: 45.0, znear: 0.1, zfar: 100.0, }; let camera_controller = CameraController::new(0.2); let mut uniforms = Uniforms::new(); uniforms.update_view_proj(&camera); let uniform_buffer = device.create_buffer_with_data( bytemuck::cast_slice(&[uniforms]), wgpu::BufferUsage::UNIFORM | wgpu::BufferUsage::COPY_DST, ); const SPACE_BETWEEN: f32 = 3.0; let instances = (0..NUM_INSTANCES_PER_ROW) .flat_map(|z| { (0..NUM_INSTANCES_PER_ROW).map(move |x| { let x = SPACE_BETWEEN * (x as f32 - NUM_INSTANCES_PER_ROW as f32 / 2.0); let z = SPACE_BETWEEN * (z as f32 - NUM_INSTANCES_PER_ROW as f32 / 2.0); let position = cgmath::Vector3 { x, y: 0.0, z }; let rotation = if position.is_zero() { cgmath::Quaternion::from_axis_angle( cgmath::Vector3::unit_z(), cgmath::Deg(0.0), ) } else { cgmath::Quaternion::from_axis_angle( position.clone().normalize(), cgmath::Deg(45.0), ) }; Instance { position, rotation } }) }) .collect::>(); let instance_data = instances.iter().map(Instance::to_raw).collect::>(); let instance_buffer_size = instance_data.len() * std::mem::size_of::>(); let instance_buffer = device.create_buffer_with_data( bytemuck::cast_slice(&instance_data), wgpu::BufferUsage::STORAGE_READ | wgpu::BufferUsage::COPY_DST, ); let uniform_bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { bindings: &[ wgpu::BindGroupLayoutEntry { binding: 0, visibility: wgpu::ShaderStage::VERTEX | wgpu::ShaderStage::FRAGMENT, ty: wgpu::BindingType::UniformBuffer { dynamic: false }, }, wgpu::BindGroupLayoutEntry { binding: 1, visibility: wgpu::ShaderStage::VERTEX, ty: wgpu::BindingType::StorageBuffer { dynamic: false, readonly: true, }, }, ], label: None, }); let uniform_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor { layout: &uniform_bind_group_layout, bindings: &[ wgpu::Binding { binding: 0, resource: wgpu::BindingResource::Buffer { buffer: &uniform_buffer, range: 0..std::mem::size_of_val(&uniforms) as wgpu::BufferAddress, }, }, wgpu::Binding { binding: 1, resource: wgpu::BindingResource::Buffer { buffer: &instance_buffer, range: 0..instance_buffer_size as wgpu::BufferAddress, }, }, ], label: None, }); let res_dir = Path::new(env!("OUT_DIR")).join("res"); let (obj_model, cmds) = model::Model::load( &device, &texture_bind_group_layout, res_dir.join("cube.obj"), ) .unwrap(); queue.submit(&cmds); let light = Light { position: (2.0, 2.0, 2.0).into(), _padding: 0, color: (1.0, 1.0, 1.0).into(), }; let light_buffer = device.create_buffer_with_data( bytemuck::cast_slice(&[light]), wgpu::BufferUsage::UNIFORM | wgpu::BufferUsage::COPY_DST, ); let light_bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { bindings: &[wgpu::BindGroupLayoutEntry { binding: 0, visibility: wgpu::ShaderStage::VERTEX | wgpu::ShaderStage::FRAGMENT, ty: wgpu::BindingType::UniformBuffer { dynamic: false }, }], label: None, }); let light_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor { layout: &light_bind_group_layout, bindings: &[wgpu::Binding { binding: 0, resource: wgpu::BindingResource::Buffer { buffer: &light_buffer, range: 0..std::mem::size_of_val(&light) as wgpu::BufferAddress, }, }], label: None, }); let depth_texture = texture::Texture::create_depth_texture(&device, &sc_desc, "depth_texture"); let render_pipeline_layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor { bind_group_layouts: &[ &texture_bind_group_layout, &uniform_bind_group_layout, &light_bind_group_layout, ], }); let render_pipeline = pipeline::RenderPipelineBuilder::new() .layout(&render_pipeline_layout) .color_solid(sc_desc.format) .depth_format(texture::Texture::DEPTH_FORMAT) .vertex_buffer(model::ModelVertex::desc()) .vertex_shader(include_bytes!("shader.vert.spv")) .fragment_shader(include_bytes!("shader.frag.spv")) .build(&device) .unwrap(); let light_render_pipeline = { let layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor { bind_group_layouts: &[&uniform_bind_group_layout, &light_bind_group_layout], }); pipeline::RenderPipelineBuilder::new() .layout(&layout) .color_solid(sc_desc.format) .depth_format(texture::Texture::DEPTH_FORMAT) .vertex_buffer(model::ModelVertex::desc()) .vertex_shader(include_bytes!("light.vert.spv")) .fragment_shader(include_bytes!("light.frag.spv")) .build(&device) .unwrap() }; let debug_material = { let diffuse_bytes = include_bytes!("../res/cobble-diffuse.png"); let normal_bytes = include_bytes!("../res/cobble-normal.png"); let mut command_buffers = vec![]; let (diffuse_texture, cmds) = texture::Texture::from_bytes(&device, diffuse_bytes, "res/alt-diffuse.png", false) .unwrap(); command_buffers.push(cmds); let (normal_texture, cmds) = texture::Texture::from_bytes(&device, normal_bytes, "res/alt-normal.png", true) .unwrap(); command_buffers.push(cmds); queue.submit(&command_buffers); model::Material::new( &device, "alt-material", diffuse_texture, normal_texture, &texture_bind_group_layout, ) }; Self { surface, device, queue, sc_desc, swap_chain, render_pipeline, obj_model, camera, camera_controller, uniform_buffer, uniform_bind_group, uniforms, instances, instance_buffer, depth_texture, size, light, light_buffer, light_bind_group, light_render_pipeline, #[allow(dead_code)] debug_material, } } fn resize(&mut self, new_size: winit::dpi::PhysicalSize) { self.camera.aspect = self.sc_desc.width as f32 / self.sc_desc.height as f32; self.size = new_size; self.sc_desc.width = new_size.width; self.sc_desc.height = new_size.height; self.swap_chain = self.device.create_swap_chain(&self.surface, &self.sc_desc); self.depth_texture = texture::Texture::create_depth_texture(&self.device, &self.sc_desc, "depth_texture"); } fn input(&mut self, event: &WindowEvent) -> bool { self.camera_controller.process_events(event) } fn update(&mut self, dt: Duration) { self.camera_controller.update_camera(&mut self.camera); self.uniforms.update_view_proj(&self.camera); let mut encoder = self .device .create_command_encoder(&wgpu::CommandEncoderDescriptor { label: None }); let staging_buffer = self.device.create_buffer_with_data( bytemuck::cast_slice(&[self.uniforms]), wgpu::BufferUsage::COPY_SRC, ); encoder.copy_buffer_to_buffer( &staging_buffer, 0, &self.uniform_buffer, 0, std::mem::size_of::() as wgpu::BufferAddress, ); // Update the light let old_position = self.light.position; self.light.position = cgmath::Quaternion::from_axis_angle( (0.0, 1.0, 0.0).into(), cgmath::Deg(45.0) * dt.as_secs_f32(), ) * old_position; let staging_buffer = self.device.create_buffer_with_data( bytemuck::cast_slice(&[self.light]), wgpu::BufferUsage::COPY_SRC, ); encoder.copy_buffer_to_buffer( &staging_buffer, 0, &self.light_buffer, 0, std::mem::size_of::() as wgpu::BufferAddress, ); self.queue.submit(&[encoder.finish()]); } fn render(&mut self) { let frame = self .swap_chain .get_next_texture() .expect("Timeout getting texture"); let mut encoder = self .device .create_command_encoder(&wgpu::CommandEncoderDescriptor { label: None }); { let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor { color_attachments: &[wgpu::RenderPassColorAttachmentDescriptor { attachment: &frame.view, resolve_target: None, load_op: wgpu::LoadOp::Clear, store_op: wgpu::StoreOp::Store, clear_color: wgpu::Color { r: 0.1, g: 0.2, b: 0.3, a: 1.0, }, }], depth_stencil_attachment: Some(wgpu::RenderPassDepthStencilAttachmentDescriptor { attachment: &self.depth_texture.view, depth_load_op: wgpu::LoadOp::Clear, depth_store_op: wgpu::StoreOp::Store, clear_depth: 1.0, stencil_load_op: wgpu::LoadOp::Clear, stencil_store_op: wgpu::StoreOp::Store, clear_stencil: 0, }), }); render_pass.set_pipeline(&self.light_render_pipeline); render_pass.draw_light_model( &self.obj_model, &self.uniform_bind_group, &self.light_bind_group, ); render_pass.set_pipeline(&self.render_pipeline); render_pass.draw_model_instanced( &self.obj_model, 0..self.instances.len() as u32, &self.uniform_bind_group, &self.light_bind_group, ); } self.queue.submit(&[encoder.finish()]); } } fn main() { env_logger::init(); let event_loop = EventLoop::new(); let title = env!("CARGO_PKG_NAME"); let window = winit::window::WindowBuilder::new() .with_title(title) .build(&event_loop) .unwrap(); let mut state = block_on(State::new(&window)); let mut is_focused = false; let mut last_update = Instant::now(); event_loop.run(move |event, _, control_flow| { *control_flow = if is_focused { ControlFlow::Poll } else { ControlFlow::Wait }; match event { Event::MainEventsCleared => { if is_focused { window.request_redraw(); } } Event::WindowEvent { ref event, window_id, } if window_id == window.id() => { if !state.input(event) { match event { WindowEvent::Focused(focused) => is_focused = *focused, WindowEvent::CloseRequested => *control_flow = ControlFlow::Exit, WindowEvent::KeyboardInput { input, .. } => match input { KeyboardInput { state: ElementState::Pressed, virtual_keycode: Some(VirtualKeyCode::Escape), .. } => { *control_flow = ControlFlow::Exit; } _ => {} }, WindowEvent::Resized(physical_size) => { state.resize(*physical_size); } WindowEvent::ScaleFactorChanged { new_inner_size, .. } => { state.resize(**new_inner_size); } _ => {} } } } Event::RedrawRequested(_) => { let now = Instant::now(); let dt = now - last_update; state.update(dt); last_update = now; state.render(); } _ => {} } }); }