use std::iter; use wgpu::util::DeviceExt; use winit::{ event::*, event_loop::EventLoop, keyboard::{KeyCode, PhysicalKey}, window::{Window, WindowBuilder}, }; #[repr(C)] #[derive(Copy, Clone, Debug, bytemuck::Pod, bytemuck::Zeroable)] struct Vertex { position: [f32; 3], color: [f32; 3], } impl Vertex { fn desc() -> wgpu::VertexBufferLayout<'static> { wgpu::VertexBufferLayout { array_stride: std::mem::size_of::() as wgpu::BufferAddress, step_mode: wgpu::VertexStepMode::Vertex, attributes: &[ wgpu::VertexAttribute { offset: 0, shader_location: 0, format: wgpu::VertexFormat::Float32x3, }, wgpu::VertexAttribute { offset: std::mem::size_of::<[f32; 3]>() as wgpu::BufferAddress, shader_location: 1, format: wgpu::VertexFormat::Float32x3, }, ], } } } const VERTICES: &[Vertex] = &[ Vertex { position: [-0.0868241, 0.49240386, 0.0], color: [0.5, 0.0, 0.5], }, // A Vertex { position: [-0.49513406, 0.06958647, 0.0], color: [0.5, 0.0, 0.5], }, // B Vertex { position: [-0.21918549, -0.44939706, 0.0], color: [0.5, 0.0, 0.5], }, // C Vertex { position: [0.35966998, -0.3473291, 0.0], color: [0.5, 0.0, 0.5], }, // D Vertex { position: [0.44147372, 0.2347359, 0.0], color: [0.5, 0.0, 0.5], }, // E ]; const INDICES: &[u16] = &[0, 1, 4, 1, 2, 4, 2, 3, 4]; struct State<'a> { surface: wgpu::Surface<'a>, device: wgpu::Device, queue: wgpu::Queue, config: wgpu::SurfaceConfiguration, render_pipeline: wgpu::RenderPipeline, vertex_buffer: wgpu::Buffer, index_buffer: wgpu::Buffer, num_indices: u32, challenge_vertex_buffer: wgpu::Buffer, challenge_index_buffer: wgpu::Buffer, num_challenge_indices: u32, use_complex: bool, size: winit::dpi::PhysicalSize, window: &'a Window, } impl<'a> State<'a> { async fn new(window: &'a Window) -> State<'a> { let size = window.inner_size(); // The instance is a handle to our GPU // BackendBit::PRIMARY => Vulkan + Metal + DX12 + Browser WebGPU let instance = wgpu::Instance::new(wgpu::InstanceDescriptor { #[cfg(not(target_arch="wasm32"))] backends: wgpu::Backends::PRIMARY, #[cfg(target_arch="wasm32")] backends: wgpu::Backends::GL, ..Default::default() }); // # Safety // // The surface needs to live as long as the window that created it. // State owns the window so this should be safe. let surface = instance.create_surface(window).unwrap(); let adapter = instance .request_adapter(&wgpu::RequestAdapterOptions { power_preference: wgpu::PowerPreference::default(), compatible_surface: Some(&surface), force_fallback_adapter: false, }) .await .unwrap(); let (device, queue) = adapter .request_device( &wgpu::DeviceDescriptor { label: None, required_features: wgpu::Features::empty(), // WebGL doesn't support all of wgpu's features, so if // we're building for the web we'll have to disable some. required_limits: if cfg!(target_arch = "wasm32") { wgpu::Limits::downlevel_webgl2_defaults() } else { wgpu::Limits::default() }, }, None, // Trace path ) .await .unwrap(); let surface_caps = surface.get_capabilities(&adapter); // Shader code in this tutorial assumes an Srgb surface texture. Using a different // one will result all the colors comming out darker. If you want to support non // Srgb surfaces, you'll need to account for that when drawing to the frame. let surface_format = surface_caps .formats .iter() .copied() .find(|f| f.is_srgb()) .unwrap_or(surface_caps.formats[0]); let config = wgpu::SurfaceConfiguration { usage: wgpu::TextureUsages::RENDER_ATTACHMENT, format: surface_format, width: size.width, height: size.height, present_mode: surface_caps.present_modes[0], alpha_mode: surface_caps.alpha_modes[0], view_formats: vec![], desired_maximum_frame_latency: 2, }; let shader = device.create_shader_module(wgpu::ShaderModuleDescriptor { label: Some("Shader"), source: wgpu::ShaderSource::Wgsl(include_str!("shader.wgsl").into()), }); let render_pipeline_layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor { label: Some("Render Pipeline Layout"), bind_group_layouts: &[], push_constant_ranges: &[], }); let render_pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor { label: Some("Render Pipeline"), layout: Some(&render_pipeline_layout), vertex: wgpu::VertexState { module: &shader, entry_point: "vs_main", buffers: &[Vertex::desc()], }, fragment: Some(wgpu::FragmentState { module: &shader, entry_point: "fs_main", targets: &[Some(wgpu::ColorTargetState { format: config.format, blend: Some(wgpu::BlendState { color: wgpu::BlendComponent::REPLACE, alpha: wgpu::BlendComponent::REPLACE, }), write_mask: wgpu::ColorWrites::ALL, })], }), primitive: wgpu::PrimitiveState { topology: wgpu::PrimitiveTopology::TriangleList, strip_index_format: None, front_face: wgpu::FrontFace::Ccw, cull_mode: Some(wgpu::Face::Back), // Setting this to anything other than Fill requires Features::POLYGON_MODE_LINE // or Features::POLYGON_MODE_POINT polygon_mode: wgpu::PolygonMode::Fill, // Requires Features::DEPTH_CLIP_CONTROL unclipped_depth: false, // Requires Features::CONSERVATIVE_RASTERIZATION conservative: false, }, depth_stencil: None, multisample: wgpu::MultisampleState { count: 1, mask: !0, alpha_to_coverage_enabled: false, }, // If the pipeline will be used with a multiview render pass, this // indicates how many array layers the attachments will have. multiview: None, }); let vertex_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Vertex Buffer"), contents: bytemuck::cast_slice(VERTICES), usage: wgpu::BufferUsages::VERTEX, }); let index_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Index Buffer"), contents: bytemuck::cast_slice(INDICES), usage: wgpu::BufferUsages::INDEX, }); let num_indices = INDICES.len() as u32; let num_vertices = 16; let angle = std::f32::consts::PI * 2.0 / num_vertices as f32; let challenge_verts = (0..num_vertices) .map(|i| { let theta = angle * i as f32; Vertex { position: [0.5 * theta.cos(), -0.5 * theta.sin(), 0.0], color: [(1.0 + theta.cos()) / 2.0, (1.0 + theta.sin()) / 2.0, 1.0], } }) .collect::>(); let num_triangles = num_vertices - 2; let challenge_indices = (1u16..num_triangles + 1) .into_iter() .flat_map(|i| vec![i + 1, i, 0]) .collect::>(); let num_challenge_indices = challenge_indices.len() as u32; let challenge_vertex_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Challenge Vertex Buffer"), contents: bytemuck::cast_slice(&challenge_verts), usage: wgpu::BufferUsages::VERTEX, }); let challenge_index_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Challenge Index Buffer"), contents: bytemuck::cast_slice(&challenge_indices), usage: wgpu::BufferUsages::INDEX, }); let use_complex = false; Self { surface, device, queue, config, render_pipeline, vertex_buffer, index_buffer, num_indices, challenge_vertex_buffer, challenge_index_buffer, num_challenge_indices, use_complex, size, window, } } pub fn window(&self) -> &Window { &self.window } pub fn resize(&mut self, new_size: winit::dpi::PhysicalSize) { if new_size.width > 0 && new_size.height > 0 { self.size = new_size; self.config.width = new_size.width; self.config.height = new_size.height; self.surface.configure(&self.device, &self.config); } } fn input(&mut self, event: &WindowEvent) -> bool { match event { WindowEvent::KeyboardInput { event: KeyEvent { state, physical_key: PhysicalKey::Code(KeyCode::Space), .. }, .. } => { self.use_complex = *state == ElementState::Pressed; true } _ => false, } } fn update(&mut self) {} fn render(&mut self) -> Result<(), wgpu::SurfaceError> { let output = self.surface.get_current_texture()?; let view = output .texture .create_view(&wgpu::TextureViewDescriptor::default()); let mut encoder = self .device .create_command_encoder(&wgpu::CommandEncoderDescriptor { label: Some("Render Encoder"), }); { let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor { label: Some("Render Pass"), color_attachments: &[Some(wgpu::RenderPassColorAttachment { view: &view, resolve_target: None, ops: wgpu::Operations { load: wgpu::LoadOp::Clear(wgpu::Color { r: 0.1, g: 0.2, b: 0.3, a: 1.0, }), store: wgpu::StoreOp::Store, }, })], depth_stencil_attachment: None, occlusion_query_set: None, timestamp_writes: None, }); render_pass.set_pipeline(&self.render_pipeline); let data = if self.use_complex { ( &self.challenge_vertex_buffer, &self.challenge_index_buffer, self.num_challenge_indices, ) } else { (&self.vertex_buffer, &self.index_buffer, self.num_indices) }; render_pass.set_vertex_buffer(0, data.0.slice(..)); render_pass.set_index_buffer(data.1.slice(..), wgpu::IndexFormat::Uint16); render_pass.draw_indexed(0..data.2, 0, 0..1); } self.queue.submit(iter::once(encoder.finish())); output.present(); Ok(()) } } fn main() { pollster::block_on(run()); } async fn run() { env_logger::init(); let event_loop = EventLoop::new().unwrap(); let window = WindowBuilder::new().build(&event_loop).unwrap(); // State::new uses async code, so we're going to wait for it to finish let mut state = State::new(&window).await; let mut surface_configured = false; event_loop .run(move |event, control_flow| { match event { Event::WindowEvent { ref event, window_id, } if window_id == state.window().id() => { if !state.input(event) { match event { WindowEvent::CloseRequested | WindowEvent::KeyboardInput { event: KeyEvent { state: ElementState::Pressed, physical_key: PhysicalKey::Code(KeyCode::Escape), .. }, .. } => control_flow.exit(), WindowEvent::Resized(physical_size) => { surface_configured = true; state.resize(*physical_size); } WindowEvent::RedrawRequested => { // This tells winit that we want another frame after this one state.window().request_redraw(); if !surface_configured { return; } state.update(); match state.render() { Ok(_) => {} // Reconfigure the surface if it's lost or outdated Err( wgpu::SurfaceError::Lost | wgpu::SurfaceError::Outdated, ) => state.resize(state.size), // The system is out of memory, we should probably quit Err(wgpu::SurfaceError::OutOfMemory) => { log::error!("OutOfMemory"); control_flow.exit(); } // This happens when the a frame takes too long to present Err(wgpu::SurfaceError::Timeout) => { log::warn!("Surface timeout") } } } _ => {} } } } _ => {} } }) .unwrap(); }