use std::iter; use wgpu::util::DeviceExt; use winit::{ event::*, event_loop::{ControlFlow, EventLoop}, window::{Window, WindowBuilder}, }; mod texture; #[repr(C)] #[derive(Copy, Clone, Debug, bytemuck::Pod, bytemuck::Zeroable)] struct Vertex { position: [f32; 3], tex_coords: [f32; 2], } impl Vertex { fn desc() -> wgpu::VertexBufferLayout<'static> { use std::mem; wgpu::VertexBufferLayout { array_stride: mem::size_of::() as wgpu::BufferAddress, step_mode: wgpu::VertexStepMode::Vertex, attributes: &[ wgpu::VertexAttribute { offset: 0, shader_location: 0, format: wgpu::VertexFormat::Float32x3, }, wgpu::VertexAttribute { offset: mem::size_of::<[f32; 3]>() as wgpu::BufferAddress, shader_location: 1, format: wgpu::VertexFormat::Float32x2, }, ], } } } const VERTICES: &[Vertex] = &[ Vertex { position: [-0.0868241, 0.49240386, 0.0], tex_coords: [0.4131759, 0.00759614], }, // A Vertex { position: [-0.49513406, 0.06958647, 0.0], tex_coords: [0.0048659444, 0.43041354], }, // B Vertex { position: [-0.21918549, -0.44939706, 0.0], tex_coords: [0.28081453, 0.949397], }, // C Vertex { position: [0.35966998, -0.3473291, 0.0], tex_coords: [0.85967, 0.84732914], }, // D Vertex { position: [0.44147372, 0.2347359, 0.0], tex_coords: [0.9414737, 0.2652641], }, // E ]; const INDICES: &[u16] = &[0, 1, 4, 1, 2, 4, 2, 3, 4]; struct State { surface: wgpu::Surface, device: wgpu::Device, queue: wgpu::Queue, config: wgpu::SurfaceConfiguration, size: winit::dpi::PhysicalSize, render_pipeline: wgpu::RenderPipeline, vertex_buffer: wgpu::Buffer, index_buffer: wgpu::Buffer, num_indices: u32, #[allow(dead_code)] diffuse_texture: texture::Texture, diffuse_bind_group: wgpu::BindGroup, #[allow(dead_code)] cartoon_texture: texture::Texture, cartoon_bind_group: wgpu::BindGroup, is_space_pressed: bool, window: Window, } impl State { async fn new(window: Window) -> Self { let size = window.inner_size(); // The instance is a handle to our GPU // BackendBit::PRIMARY => Vulkan + Metal + DX12 + Browser WebGPU let instance = wgpu::Instance::new(wgpu::InstanceDescriptor { backends: wgpu::Backends::all(), ..Default::default() }); // # Safety // // The surface needs to live as long as the window that created it. // State owns the window so this should be safe. let surface = unsafe { instance.create_surface(&window) }.unwrap(); let adapter = instance .request_adapter(&wgpu::RequestAdapterOptions { power_preference: wgpu::PowerPreference::default(), compatible_surface: Some(&surface), force_fallback_adapter: false, }) .await .unwrap(); let (device, queue) = adapter .request_device( &wgpu::DeviceDescriptor { label: None, features: wgpu::Features::empty(), // WebGL doesn't support all of wgpu's features, so if // we're building for the web we'll have to disable some. limits: if cfg!(target_arch = "wasm32") { wgpu::Limits::downlevel_webgl2_defaults() } else { wgpu::Limits::default() }, }, None, // Trace path ) .await .unwrap(); let surface_caps = surface.get_capabilities(&adapter); // Shader code in this tutorial assumes an Srgb surface texture. Using a different // one will result all the colors comming out darker. If you want to support non // Srgb surfaces, you'll need to account for that when drawing to the frame. let surface_format = surface_caps .formats .iter() .copied() .find(|f| f.is_srgb()) .unwrap_or(surface_caps.formats[0]); let config = wgpu::SurfaceConfiguration { usage: wgpu::TextureUsages::RENDER_ATTACHMENT, format: surface_format, width: size.width, height: size.height, present_mode: surface_caps.present_modes[0], alpha_mode: surface_caps.alpha_modes[0], view_formats: vec![], }; surface.configure(&device, &config); let texture_bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { entries: &[ wgpu::BindGroupLayoutEntry { binding: 0, visibility: wgpu::ShaderStages::FRAGMENT, ty: wgpu::BindingType::Texture { multisampled: false, view_dimension: wgpu::TextureViewDimension::D2, sample_type: wgpu::TextureSampleType::Float { filterable: true }, }, count: None, }, wgpu::BindGroupLayoutEntry { binding: 1, visibility: wgpu::ShaderStages::FRAGMENT, ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering), count: None, }, ], label: Some("texture_bind_group_layout"), }); let diffuse_bytes = include_bytes!("happy-tree.png"); let diffuse_texture = texture::Texture::from_bytes(&device, &queue, diffuse_bytes, "happy-tree.png").unwrap(); let diffuse_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor { layout: &texture_bind_group_layout, entries: &[ wgpu::BindGroupEntry { binding: 0, resource: wgpu::BindingResource::TextureView(&diffuse_texture.view), }, wgpu::BindGroupEntry { binding: 1, resource: wgpu::BindingResource::Sampler(&diffuse_texture.sampler), }, ], label: Some("diffuse_bind_group"), }); let cartoon_bytes = include_bytes!("happy-tree-cartoon.png"); let cartoon_texture = texture::Texture::from_bytes(&device, &queue, cartoon_bytes, "happy-tree-cartoon.png") .unwrap(); let cartoon_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor { layout: &texture_bind_group_layout, entries: &[ wgpu::BindGroupEntry { binding: 0, resource: wgpu::BindingResource::TextureView(&cartoon_texture.view), }, wgpu::BindGroupEntry { binding: 1, resource: wgpu::BindingResource::Sampler(&cartoon_texture.sampler), }, ], label: Some("cartoon_bind_group"), }); let shader = device.create_shader_module(wgpu::ShaderModuleDescriptor { label: Some("Shader"), source: wgpu::ShaderSource::Wgsl(include_str!("shader.wgsl").into()), }); let render_pipeline_layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor { label: Some("Render Pipeline Layout"), bind_group_layouts: &[&texture_bind_group_layout], push_constant_ranges: &[], }); let render_pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor { label: Some("Render Pipeline"), layout: Some(&render_pipeline_layout), vertex: wgpu::VertexState { module: &shader, entry_point: "vs_main", buffers: &[Vertex::desc()], }, fragment: Some(wgpu::FragmentState { module: &shader, entry_point: "fs_main", targets: &[Some(wgpu::ColorTargetState { format: config.format, blend: Some(wgpu::BlendState { color: wgpu::BlendComponent::REPLACE, alpha: wgpu::BlendComponent::REPLACE, }), write_mask: wgpu::ColorWrites::ALL, })], }), primitive: wgpu::PrimitiveState { topology: wgpu::PrimitiveTopology::TriangleList, strip_index_format: None, front_face: wgpu::FrontFace::Ccw, cull_mode: Some(wgpu::Face::Back), // Setting this to anything other than Fill requires Features::POLYGON_MODE_LINE // or Features::POLYGON_MODE_POINT polygon_mode: wgpu::PolygonMode::Fill, // Requires Features::DEPTH_CLIP_CONTROL unclipped_depth: false, // Requires Features::CONSERVATIVE_RASTERIZATION conservative: false, }, depth_stencil: None, multisample: wgpu::MultisampleState { count: 1, mask: !0, alpha_to_coverage_enabled: false, }, // If the pipeline will be used with a multiview render pass, this // indicates how many array layers the attachments will have. multiview: None, }); let vertex_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Vertex Buffer"), contents: bytemuck::cast_slice(VERTICES), usage: wgpu::BufferUsages::VERTEX, }); let index_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Index Buffer"), contents: bytemuck::cast_slice(INDICES), usage: wgpu::BufferUsages::INDEX, }); let num_indices = INDICES.len() as u32; Self { surface, device, queue, config, render_pipeline, vertex_buffer, index_buffer, num_indices, diffuse_texture, diffuse_bind_group, cartoon_texture, cartoon_bind_group, size, is_space_pressed: false, window, } } pub fn window(&self) -> &Window { &self.window } pub fn resize(&mut self, new_size: winit::dpi::PhysicalSize) { if new_size.width > 0 && new_size.height > 0 { self.size = new_size; self.config.width = new_size.width; self.config.height = new_size.height; self.surface.configure(&self.device, &self.config); } } fn input(&mut self, event: &WindowEvent) -> bool { match event { WindowEvent::KeyboardInput { input: KeyboardInput { state, virtual_keycode: Some(VirtualKeyCode::Space), .. }, .. } => { self.is_space_pressed = *state == ElementState::Pressed; true } _ => false, } } fn update(&mut self) {} fn render(&mut self) -> Result<(), wgpu::SurfaceError> { let output = self.surface.get_current_texture()?; let view = output .texture .create_view(&wgpu::TextureViewDescriptor::default()); let mut encoder = self .device .create_command_encoder(&wgpu::CommandEncoderDescriptor { label: Some("Render Encoder"), }); { let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor { label: Some("Render Pass"), color_attachments: &[Some(wgpu::RenderPassColorAttachment { view: &view, resolve_target: None, ops: wgpu::Operations { load: wgpu::LoadOp::Clear(wgpu::Color { r: 0.1, g: 0.2, b: 0.3, a: 1.0, }), store: wgpu::StoreOp::Store, }, })], depth_stencil_attachment: None, occlusion_query_set: None, timestamp_writes: None, }); let bind_group = if self.is_space_pressed { &self.cartoon_bind_group } else { &self.diffuse_bind_group }; render_pass.set_pipeline(&self.render_pipeline); render_pass.set_bind_group(0, bind_group, &[]); render_pass.set_vertex_buffer(0, self.vertex_buffer.slice(..)); render_pass.set_index_buffer(self.index_buffer.slice(..), wgpu::IndexFormat::Uint16); render_pass.draw_indexed(0..self.num_indices, 0, 0..1); } self.queue.submit(iter::once(encoder.finish())); output.present(); Ok(()) } } fn main() { pollster::block_on(run()); } async fn run() { env_logger::init(); let event_loop = EventLoop::new(); let window = WindowBuilder::new().build(&event_loop).unwrap(); // State::new uses async code, so we're going to wait for it to finish let mut state = State::new(window).await; event_loop.run(move |event, _, control_flow| { match event { Event::WindowEvent { ref event, window_id, } if window_id == state.window().id() => { if !state.input(event) { match event { WindowEvent::CloseRequested | WindowEvent::KeyboardInput { input: KeyboardInput { state: ElementState::Pressed, virtual_keycode: Some(VirtualKeyCode::Escape), .. }, .. } => *control_flow = ControlFlow::Exit, WindowEvent::Resized(physical_size) => { state.resize(*physical_size); } WindowEvent::ScaleFactorChanged { new_inner_size, .. } => { // new_inner_size is &mut so we have to dereference it twice state.resize(**new_inner_size); } _ => {} } } } Event::RedrawRequested(window_id) if window_id == state.window().id() => { state.update(); match state.render() { Ok(_) => {} // Reconfigure the surface if it's lost or outdated Err(wgpu::SurfaceError::Lost | wgpu::SurfaceError::Outdated) => { state.resize(state.size) } // The system is out of memory, we should probably quit Err(wgpu::SurfaceError::OutOfMemory) => *control_flow = ControlFlow::Exit, // We're ignoring timeouts Err(wgpu::SurfaceError::Timeout) => log::warn!("Surface timeout"), } } Event::MainEventsCleared => { // RedrawRequested will only trigger once, unless we manually // request it. state.window().request_redraw(); } _ => {} } }); }