use std::iter; use cgmath::prelude::*; use wgpu::util::DeviceExt; use winit::{ event::*, event_loop::{ControlFlow, EventLoop}, window::{Window, WindowBuilder}, }; mod texture; #[repr(C)] #[derive(Copy, Clone, Debug, bytemuck::Pod, bytemuck::Zeroable)] struct Vertex { position: [f32; 3], tex_coords: [f32; 2], } impl Vertex { fn desc<'a>() -> wgpu::VertexBufferLayout<'a> { use std::mem; wgpu::VertexBufferLayout { array_stride: mem::size_of::() as wgpu::BufferAddress, step_mode: wgpu::InputStepMode::Vertex, attributes: &[ wgpu::VertexAttribute { offset: 0, shader_location: 0, format: wgpu::VertexFormat::Float32x3, }, wgpu::VertexAttribute { offset: mem::size_of::<[f32; 3]>() as wgpu::BufferAddress, shader_location: 1, format: wgpu::VertexFormat::Float32x2, }, ], } } } const VERTICES: &[Vertex] = &[ Vertex { position: [-0.0868241, -0.49240386, 0.0], tex_coords: [1.0 - 0.4131759, 1.0 - 0.00759614], }, // A Vertex { position: [-0.49513406, -0.06958647, 0.0], tex_coords: [1.0 - 0.0048659444, 1.0 - 0.43041354], }, // B Vertex { position: [-0.21918549, 0.44939706, 0.0], tex_coords: [1.0 - 0.28081453, 1.0 - 0.949397], }, // C Vertex { position: [0.35966998, 0.3473291, 0.0], tex_coords: [1.0 - 0.85967, 1.0 - 0.84732914], }, // D Vertex { position: [0.44147372, -0.2347359, 0.0], tex_coords: [1.0 - 0.9414737, 1.0 - 0.2652641], }, // E ]; const INDICES: &[u16] = &[0, 1, 4, 1, 2, 4, 2, 3, 4, /* padding */ 0]; #[rustfmt::skip] pub const OPENGL_TO_WGPU_MATRIX: cgmath::Matrix4 = cgmath::Matrix4::new( 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.5, 1.0, ); const NUM_INSTANCES_PER_ROW: u32 = 10; const INSTANCE_DISPLACEMENT: cgmath::Vector3 = cgmath::Vector3::new( NUM_INSTANCES_PER_ROW as f32 * 0.5, 0.0, NUM_INSTANCES_PER_ROW as f32 * 0.5, ); struct Camera { eye: cgmath::Point3, target: cgmath::Point3, up: cgmath::Vector3, aspect: f32, fovy: f32, znear: f32, zfar: f32, } impl Camera { fn build_view_projection_matrix(&self) -> cgmath::Matrix4 { let view = cgmath::Matrix4::look_at_rh(self.eye, self.target, self.up); let proj = cgmath::perspective(cgmath::Deg(self.fovy), self.aspect, self.znear, self.zfar); proj * view } } #[repr(C)] #[derive(Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)] struct CameraUniform { view_proj: [[f32; 4]; 4], } impl CameraUniform { fn new() -> Self { Self { view_proj: cgmath::Matrix4::identity().into(), } } fn update_view_proj(&mut self, camera: &Camera) { self.view_proj = (OPENGL_TO_WGPU_MATRIX * camera.build_view_projection_matrix()).into(); } } struct CameraController { speed: f32, is_up_pressed: bool, is_down_pressed: bool, is_forward_pressed: bool, is_backward_pressed: bool, is_left_pressed: bool, is_right_pressed: bool, } impl CameraController { fn new(speed: f32) -> Self { Self { speed, is_up_pressed: false, is_down_pressed: false, is_forward_pressed: false, is_backward_pressed: false, is_left_pressed: false, is_right_pressed: false, } } fn process_events(&mut self, event: &WindowEvent) -> bool { match event { WindowEvent::KeyboardInput { input: KeyboardInput { state, virtual_keycode: Some(keycode), .. }, .. } => { let is_pressed = *state == ElementState::Pressed; match keycode { VirtualKeyCode::Space => { self.is_up_pressed = is_pressed; true } VirtualKeyCode::LShift => { self.is_down_pressed = is_pressed; true } VirtualKeyCode::W | VirtualKeyCode::Up => { self.is_forward_pressed = is_pressed; true } VirtualKeyCode::A | VirtualKeyCode::Left => { self.is_left_pressed = is_pressed; true } VirtualKeyCode::S | VirtualKeyCode::Down => { self.is_backward_pressed = is_pressed; true } VirtualKeyCode::D | VirtualKeyCode::Right => { self.is_right_pressed = is_pressed; true } _ => false, } } _ => false, } } fn update_camera(&self, camera: &mut Camera) { let forward = camera.target - camera.eye; let forward_norm = forward.normalize(); let forward_mag = forward.magnitude(); // Prevents glitching when camera gets too close to the // center of the scene. if self.is_forward_pressed && forward_mag > self.speed { camera.eye += forward_norm * self.speed; } if self.is_backward_pressed { camera.eye -= forward_norm * self.speed; } let right = forward_norm.cross(camera.up); // Redo radius calc in case the up/ down is pressed. let forward = camera.target - camera.eye; let forward_mag = forward.magnitude(); if self.is_right_pressed { // Rescale the distance between the target and eye so // that it doesn't change. The eye therefore still // lies on the circle made by the target and eye. camera.eye = camera.target - (forward + right * self.speed).normalize() * forward_mag; } if self.is_left_pressed { camera.eye = camera.target - (forward - right * self.speed).normalize() * forward_mag; } } } const ROTATION_SPEED: f32 = 2.0 * std::f32::consts::PI / 60.0; struct Instance { position: cgmath::Vector3, rotation: cgmath::Quaternion, } impl Instance { fn to_raw(&self) -> InstanceRaw { let transform = cgmath::Matrix4::from_translation(self.position) * cgmath::Matrix4::from(self.rotation); InstanceRaw { transform: transform.into(), } } } #[repr(C)] #[derive(Copy, Clone, Debug, bytemuck::Pod, bytemuck::Zeroable)] struct InstanceRaw { transform: [[f32; 4]; 4], } impl InstanceRaw { fn desc<'a>() -> wgpu::VertexBufferLayout<'a> { use std::mem; wgpu::VertexBufferLayout { array_stride: mem::size_of::() as wgpu::BufferAddress, // We need to switch from using a step mode of Vertex to Instance // This means that our shaders will only change to use the next // instance when the shader starts processing a new instance step_mode: wgpu::InputStepMode::Instance, attributes: &[ wgpu::VertexAttribute { offset: 0, // While our vertex shader only uses locations 0, and 1 now, in later tutorials we'll // be using 2, 3, and 4, for Vertex. We'll start at slot 5 not conflict with them later shader_location: 5, format: wgpu::VertexFormat::Float32x4, }, // A mat4 takes up 4 vertex slots as it is technically 4 vec4s. We need to define a slot // for each vec4. We don't have to do this in code though. wgpu::VertexAttribute { offset: mem::size_of::<[f32; 4]>() as wgpu::BufferAddress, shader_location: 6, format: wgpu::VertexFormat::Float32x4, }, wgpu::VertexAttribute { offset: mem::size_of::<[f32; 8]>() as wgpu::BufferAddress, shader_location: 7, format: wgpu::VertexFormat::Float32x4, }, wgpu::VertexAttribute { offset: mem::size_of::<[f32; 12]>() as wgpu::BufferAddress, shader_location: 8, format: wgpu::VertexFormat::Float32x4, }, ], } } } struct State { surface: wgpu::Surface, device: wgpu::Device, queue: wgpu::Queue, config: wgpu::SurfaceConfiguration, render_pipeline: wgpu::RenderPipeline, vertex_buffer: wgpu::Buffer, index_buffer: wgpu::Buffer, num_indices: u32, #[allow(dead_code)] diffuse_texture: texture::Texture, diffuse_bind_group: wgpu::BindGroup, camera: Camera, camera_controller: CameraController, camera_uniform: CameraUniform, camera_buffer: wgpu::Buffer, camera_bind_group: wgpu::BindGroup, size: winit::dpi::PhysicalSize, instances: Vec, instance_buffer: wgpu::Buffer, } fn quat_mul(q: cgmath::Quaternion, r: cgmath::Quaternion) -> cgmath::Quaternion { // This block uses quaternions of the form of // q=q0+iq1+jq2+kq3 // and // r=r0+ir1+jr2+kr3. // The quaternion product has the form of // t=q×r=t0+it1+jt2+kt3, // where // t0=(r0 q0 − r1 q1 − r2 q2 − r3 q3) // t1=(r0 q1 + r1 q0 − r2 q3 + r3 q2) // t2=(r0 q2 + r1 q3 + r2 q0 − r3 q1) // t3=(r0 q3 − r1 q2 + r2 q1 + r3 q0 let w = r.s * q.s - r.v.x * q.v.x - r.v.y * q.v.y - r.v.z * q.v.z; let xi = r.s * q.v.x + r.v.x * q.s - r.v.y * q.v.z + r.v.z * q.v.y; let yj = r.s * q.v.y + r.v.x * q.v.z + r.v.y * q.s - r.v.z * q.v.x; let zk = r.s * q.v.z - r.v.x * q.v.y + r.v.y * q.v.x + r.v.z * q.s; cgmath::Quaternion::new(w, xi, yj, zk) } impl State { async fn new(window: &Window) -> Self { let size = window.inner_size(); // The instance is a handle to our GPU // BackendBit::PRIMARY => Vulkan + Metal + DX12 + Browser WebGPU let instance = wgpu::Instance::new(wgpu::Backends::all()); let surface = unsafe { instance.create_surface(window) }; let adapter = instance .request_adapter(&wgpu::RequestAdapterOptions { power_preference: wgpu::PowerPreference::default(), compatible_surface: Some(&surface), }) .await .unwrap(); let (device, queue) = adapter .request_device( &wgpu::DeviceDescriptor { label: None, features: wgpu::Features::empty(), limits: wgpu::Limits::default(), }, None, // Trace path ) .await .unwrap(); let config = wgpu::SurfaceConfiguration { usage: wgpu::TextureUsages::RENDER_ATTACHMENT, format: surface.get_preferred_format(&adapter).unwrap(), width: size.width, height: size.height, present_mode: wgpu::PresentMode::Fifo, }; surface.configure(&device, &config); let diffuse_bytes = include_bytes!("happy-tree.png"); let diffuse_texture = texture::Texture::from_bytes(&device, &queue, diffuse_bytes, "happy-tree.png").unwrap(); let texture_bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { entries: &[ wgpu::BindGroupLayoutEntry { binding: 0, visibility: wgpu::ShaderStage::FRAGMENT, ty: wgpu::BindingType::Texture { multisampled: false, view_dimension: wgpu::TextureViewDimension::D2, sample_type: wgpu::TextureSampleType::Float { filterable: true }, }, count: None, }, wgpu::BindGroupLayoutEntry { binding: 1, visibility: wgpu::ShaderStage::FRAGMENT, ty: wgpu::BindingType::Sampler { comparison: false, filtering: true, }, count: None, }, ], label: Some("texture_bind_group_layout"), }); let diffuse_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor { layout: &texture_bind_group_layout, entries: &[ wgpu::BindGroupEntry { binding: 0, resource: wgpu::BindingResource::TextureView(&diffuse_texture.view), }, wgpu::BindGroupEntry { binding: 1, resource: wgpu::BindingResource::Sampler(&diffuse_texture.sampler), }, ], label: Some("diffuse_bind_group"), }); let camera = Camera { eye: (0.0, 5.0, -10.0).into(), target: (0.0, 0.0, 0.0).into(), up: cgmath::Vector3::unit_y(), aspect: config.width as f32 / config.height as f32, fovy: 45.0, znear: 0.1, zfar: 100.0, }; let camera_controller = CameraController::new(0.2); let mut camera_uniform = CameraUniform::new(); camera_uniform.update_view_proj(&camera); let camera_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Camera Buffer"), contents: bytemuck::cast_slice(&[camera_uniform]), usage: wgpu::BufferUsage::UNIFORM | wgpu::BufferUsage::COPY_DST, }); let instances = (0..NUM_INSTANCES_PER_ROW) .flat_map(|z| { (0..NUM_INSTANCES_PER_ROW).map(move |x| { let position = cgmath::Vector3 { x: x as f32, y: 0.0, z: z as f32, } - INSTANCE_DISPLACEMENT; let rotation = if position.is_zero() { // this is needed so an object at (0, 0, 0) won't get scaled to zero // as Quaternions can effect scale if they're not create correctly cgmath::Quaternion::from_axis_angle( cgmath::Vector3::unit_y(), cgmath::Deg(0.0), ) } else { cgmath::Quaternion::from_axis_angle(position.normalize(), cgmath::Deg(45.0)) }; Instance { position, rotation } }) }) .collect::>(); let instance_data = instances.iter().map(Instance::to_raw).collect::>(); let instance_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Instance Buffer"), contents: bytemuck::cast_slice(&instance_data), usage: wgpu::BufferUsage::VERTEX | wgpu::BufferUsage::COPY_DST, }); let camera_bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { entries: &[wgpu::BindGroupLayoutEntry { binding: 0, visibility: wgpu::ShaderStage::VERTEX, ty: wgpu::BindingType::Buffer { ty: wgpu::BufferBindingType::Uniform, has_dynamic_offset: false, min_binding_size: None, }, count: None, }], label: Some("camera_bind_group_layout"), }); let camera_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor { layout: &camera_bind_group_layout, entries: &[wgpu::BindGroupEntry { binding: 0, resource: camera_buffer.as_entire_binding(), }], label: Some("camera_bind_group"), }); let shader = device.create_shader_module(&wgpu::ShaderModuleDescriptor { label: Some("Shader"), flags: wgpu::ShaderFlags::all(), source: wgpu::ShaderSource::Wgsl(include_str!("shader.wgsl").into()), }); let render_pipeline_layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor { label: Some("Render Pipeline Layout"), bind_group_layouts: &[&texture_bind_group_layout, &camera_bind_group_layout], push_constant_ranges: &[], }); let render_pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor { label: Some("Render Pipeline"), layout: Some(&render_pipeline_layout), vertex: wgpu::VertexState { module: &shader, entry_point: "main", buffers: &[Vertex::desc(), InstanceRaw::desc()], }, fragment: Some(wgpu::FragmentState { module: &shader, entry_point: "main", targets: &[wgpu::ColorTargetState { format: config.format, blend: Some(wgpu::BlendState { color: wgpu::BlendComponent::REPLACE, alpha: wgpu::BlendComponent::REPLACE, }), write_mask: wgpu::ColorWrite::ALL, }], }), primitive: wgpu::PrimitiveState { topology: wgpu::PrimitiveTopology::TriangleList, strip_index_format: None, front_face: wgpu::FrontFace::Ccw, cull_mode: Some(wgpu::Face::Back), // Setting this to anything other than Fill requires Features::NON_FILL_POLYGON_MODE polygon_mode: wgpu::PolygonMode::Fill, // Requires Features::DEPTH_CLAMPING clamp_depth: false, // Requires Features::CONSERVATIVE_RASTERIZATION conservative: false, }, depth_stencil: None, multisample: wgpu::MultisampleState { count: 1, mask: !0, alpha_to_coverage_enabled: false, }, }); let vertex_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Vertex Buffer"), contents: bytemuck::cast_slice(VERTICES), usage: wgpu::BufferUsage::VERTEX, }); let index_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Index Buffer"), contents: bytemuck::cast_slice(INDICES), usage: wgpu::BufferUsage::INDEX, }); let num_indices = INDICES.len() as u32; Self { surface, device, queue, config, swap_chain, render_pipeline, vertex_buffer, index_buffer, num_indices, diffuse_texture, diffuse_bind_group, camera, camera_controller, camera_buffer, camera_bind_group, camera_uniform, size, instances, instance_buffer, } } fn resize(&mut self, new_size: winit::dpi::PhysicalSize) { if new_size.width > 0 && new_size.height > 0 { self.size = new_size; self.config.width = new_size.width; self.config.height = new_size.height; self.surface.configure(&self.device, &self.config); self.camera.aspect = self.config.width as f32 / self.config.height as f32; } } fn input(&mut self, event: &WindowEvent) -> bool { self.camera_controller.process_events(event) } fn update(&mut self) { self.camera_controller.update_camera(&mut self.camera); self.camera_uniform.update_view_proj(&self.camera); self.queue.write_buffer( &self.camera_buffer, 0, bytemuck::cast_slice(&[self.camera_uniform]), ); for instance in &mut self.instances { let amount = cgmath::Quaternion::from_angle_y(cgmath::Rad(ROTATION_SPEED)); let current = instance.rotation; instance.rotation = quat_mul(amount, current); } let instance_data = self .instances .iter() .map(Instance::to_raw) .collect::>(); self.queue.write_buffer( &self.instance_buffer, 0, bytemuck::cast_slice(&instance_data), ); } fn render(&mut self) -> Result<(), wgpu::SurfaceError> { let frame = self.surface.get_current_frame()?.output.texture.create_view(&wgpu::TextureViewDescriptor::default()); let mut encoder = self .device .create_command_encoder(&wgpu::CommandEncoderDescriptor { label: Some("Render Encoder"), }); { let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor { label: Some("Render Pass"), color_attachments: &[wgpu::RenderPassColorAttachment { view: &frame, resolve_target: None, ops: wgpu::Operations { load: wgpu::LoadOp::Clear(wgpu::Color { r: 0.1, g: 0.2, b: 0.3, a: 1.0, }), store: true, }, }], depth_stencil_attachment: None, }); render_pass.set_vertex_buffer(1, self.instance_buffer.slice(..)); render_pass.set_pipeline(&self.render_pipeline); render_pass.set_bind_group(0, &self.diffuse_bind_group, &[]); render_pass.set_bind_group(1, &self.camera_bind_group, &[]); render_pass.set_vertex_buffer(0, self.vertex_buffer.slice(..)); render_pass.set_index_buffer(self.index_buffer.slice(..), wgpu::IndexFormat::Uint16); render_pass.draw_indexed(0..self.num_indices, 0, 0..self.instances.len() as u32); } self.queue.submit(iter::once(encoder.finish())); Ok(()) } } fn main() { env_logger::init(); let event_loop = EventLoop::new(); let window = WindowBuilder::new().build(&event_loop).unwrap(); // Since main can't be async, we're going to need to block let mut state = pollster::block_on(State::new(&window)); event_loop.run(move |event, _, control_flow| { match event { Event::WindowEvent { ref event, window_id, } if window_id == window.id() => { if !state.input(event) { match event { WindowEvent::CloseRequested | WindowEvent::KeyboardInput { input: KeyboardInput { state: ElementState::Pressed, virtual_keycode: Some(VirtualKeyCode::Escape), .. }, .. } => *control_flow = ControlFlow::Exit, WindowEvent::Resized(physical_size) => { state.resize(*physical_size); } WindowEvent::ScaleFactorChanged { new_inner_size, .. } => { // new_inner_size is &mut so w have to dereference it twice state.resize(**new_inner_size); } _ => {} } } } Event::RedrawRequested(_) => { state.update(); match state.render() { Ok(_) => {} // Recreate the swap_chain if lost Err(wgpu::SurfaceError::Lost) => state.resize(state.size), // The system is out of memory, we should probably quit Err(wgpu::SurfaceError::OutOfMemory) => *control_flow = ControlFlow::Exit, // All other errors (Outdated, Timeout) should be resolved by the next frame Err(e) => eprintln!("{:?}", e), } } Event::MainEventsCleared => { // RedrawRequested will only trigger once, unless we manually // request it. window.request_redraw(); } _ => {} } }); }