use std::iter; use cgmath::prelude::*; use wgpu::util::DeviceExt; use winit::{ event::*, event_loop::EventLoop, keyboard::{KeyCode, PhysicalKey}, window::Window, }; #[cfg(target_arch = "wasm32")] use wasm_bindgen::prelude::*; mod model; mod resources; mod texture; use model::{DrawLight, DrawModel, Vertex}; #[rustfmt::skip] pub const OPENGL_TO_WGPU_MATRIX: cgmath::Matrix4 = cgmath::Matrix4::new( 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0, ); const NUM_INSTANCES_PER_ROW: u32 = 10; struct Camera { eye: cgmath::Point3, target: cgmath::Point3, up: cgmath::Vector3, aspect: f32, fovy: f32, znear: f32, zfar: f32, } impl Camera { fn build_view_projection_matrix(&self) -> cgmath::Matrix4 { let view = cgmath::Matrix4::look_at_rh(self.eye, self.target, self.up); let proj = cgmath::perspective(cgmath::Deg(self.fovy), self.aspect, self.znear, self.zfar); proj * view } } #[repr(C)] #[derive(Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)] struct CameraUniform { view_position: [f32; 4], view_proj: [[f32; 4]; 4], } impl CameraUniform { fn new() -> Self { Self { view_position: [0.0; 4], view_proj: cgmath::Matrix4::identity().into(), } } fn update_view_proj(&mut self, camera: &Camera) { self.view_position = camera.eye.to_homogeneous().into(); self.view_proj = (OPENGL_TO_WGPU_MATRIX * camera.build_view_projection_matrix()).into(); } } struct CameraController { speed: f32, is_up_pressed: bool, is_down_pressed: bool, is_forward_pressed: bool, is_backward_pressed: bool, is_left_pressed: bool, is_right_pressed: bool, } impl CameraController { fn new(speed: f32) -> Self { Self { speed, is_up_pressed: false, is_down_pressed: false, is_forward_pressed: false, is_backward_pressed: false, is_left_pressed: false, is_right_pressed: false, } } fn process_events(&mut self, event: &WindowEvent) -> bool { match event { WindowEvent::KeyboardInput { event: KeyEvent { state, physical_key: PhysicalKey::Code(keycode), .. }, .. } => { let is_pressed = *state == ElementState::Pressed; match keycode { KeyCode::Space => { self.is_up_pressed = is_pressed; true } KeyCode::ShiftLeft => { self.is_down_pressed = is_pressed; true } KeyCode::KeyW | KeyCode::ArrowUp => { self.is_forward_pressed = is_pressed; true } KeyCode::KeyA | KeyCode::ArrowLeft => { self.is_left_pressed = is_pressed; true } KeyCode::KeyS | KeyCode::ArrowDown => { self.is_backward_pressed = is_pressed; true } KeyCode::KeyD | KeyCode::ArrowRight => { self.is_right_pressed = is_pressed; true } _ => false, } } _ => false, } } fn update_camera(&self, camera: &mut Camera) { let forward = camera.target - camera.eye; let forward_norm = forward.normalize(); let forward_mag = forward.magnitude(); // Prevents glitching when camera gets too close to the // center of the scene. if self.is_forward_pressed && forward_mag > self.speed { camera.eye += forward_norm * self.speed; } if self.is_backward_pressed { camera.eye -= forward_norm * self.speed; } let right = forward_norm.cross(camera.up); // Redo radius calc in case the up/ down is pressed. let forward = camera.target - camera.eye; let forward_mag = forward.magnitude(); if self.is_right_pressed { // Rescale the distance between the target and eye so // that it doesn't change. The eye therefore still // lies on the circle made by the target and eye. camera.eye = camera.target - (forward + right * self.speed).normalize() * forward_mag; } if self.is_left_pressed { camera.eye = camera.target - (forward - right * self.speed).normalize() * forward_mag; } } } struct Instance { position: cgmath::Vector3, rotation: cgmath::Quaternion, } impl Instance { fn to_raw(&self) -> InstanceRaw { InstanceRaw { model: (cgmath::Matrix4::from_translation(self.position) * cgmath::Matrix4::from(self.rotation)) .into(), normal: cgmath::Matrix3::from(self.rotation).into(), } } } #[repr(C)] #[derive(Debug, Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)] #[allow(dead_code)] struct InstanceRaw { model: [[f32; 4]; 4], normal: [[f32; 3]; 3], } impl model::Vertex for InstanceRaw { fn desc() -> wgpu::VertexBufferLayout<'static> { use std::mem; wgpu::VertexBufferLayout { array_stride: mem::size_of::() as wgpu::BufferAddress, // We need to switch from using a step mode of Vertex to Instance // This means that our shaders will only change to use the next // instance when the shader starts processing a new instance step_mode: wgpu::VertexStepMode::Instance, attributes: &[ wgpu::VertexAttribute { offset: 0, // While our vertex shader only uses locations 0, and 1 now, in later tutorials we'll // be using 2, 3, and 4, for Vertex. We'll start at slot 5 not conflict with them later shader_location: 5, format: wgpu::VertexFormat::Float32x4, }, // A mat4 takes up 4 vertex slots as it is technically 4 vec4s. We need to define a slot // for each vec4. We don't have to do this in code though. wgpu::VertexAttribute { offset: mem::size_of::<[f32; 4]>() as wgpu::BufferAddress, shader_location: 6, format: wgpu::VertexFormat::Float32x4, }, wgpu::VertexAttribute { offset: mem::size_of::<[f32; 8]>() as wgpu::BufferAddress, shader_location: 7, format: wgpu::VertexFormat::Float32x4, }, wgpu::VertexAttribute { offset: mem::size_of::<[f32; 12]>() as wgpu::BufferAddress, shader_location: 8, format: wgpu::VertexFormat::Float32x4, }, wgpu::VertexAttribute { offset: mem::size_of::<[f32; 16]>() as wgpu::BufferAddress, shader_location: 9, format: wgpu::VertexFormat::Float32x3, }, wgpu::VertexAttribute { offset: mem::size_of::<[f32; 19]>() as wgpu::BufferAddress, shader_location: 10, format: wgpu::VertexFormat::Float32x3, }, wgpu::VertexAttribute { offset: mem::size_of::<[f32; 22]>() as wgpu::BufferAddress, shader_location: 11, format: wgpu::VertexFormat::Float32x3, }, ], } } } #[repr(C)] #[derive(Debug, Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)] struct LightUniform { position: [f32; 3], // Due to uniforms requiring 16 byte (4 float) spacing, we need to use a padding field here _padding: u32, color: [f32; 3], _padding2: u32, } struct State<'a> { window: &'a Window, surface: wgpu::Surface<'a>, device: wgpu::Device, queue: wgpu::Queue, config: wgpu::SurfaceConfiguration, render_pipeline: wgpu::RenderPipeline, obj_model: model::Model, camera: Camera, camera_controller: CameraController, camera_uniform: CameraUniform, camera_buffer: wgpu::Buffer, camera_bind_group: wgpu::BindGroup, instances: Vec, #[allow(dead_code)] instance_buffer: wgpu::Buffer, depth_texture: texture::Texture, size: winit::dpi::PhysicalSize, light_uniform: LightUniform, light_buffer: wgpu::Buffer, light_bind_group: wgpu::BindGroup, light_render_pipeline: wgpu::RenderPipeline, #[allow(dead_code)] debug_material: model::Material, } fn create_render_pipeline( device: &wgpu::Device, layout: &wgpu::PipelineLayout, color_format: wgpu::TextureFormat, depth_format: Option, vertex_layouts: &[wgpu::VertexBufferLayout], shader: wgpu::ShaderModuleDescriptor, ) -> wgpu::RenderPipeline { let shader = device.create_shader_module(shader); device.create_render_pipeline(&wgpu::RenderPipelineDescriptor { label: Some("Render Pipeline"), layout: Some(layout), vertex: wgpu::VertexState { module: &shader, entry_point: "vs_main", buffers: vertex_layouts, }, fragment: Some(wgpu::FragmentState { module: &shader, entry_point: "fs_main", targets: &[Some(wgpu::ColorTargetState { format: color_format, blend: Some(wgpu::BlendState { alpha: wgpu::BlendComponent::REPLACE, color: wgpu::BlendComponent::REPLACE, }), write_mask: wgpu::ColorWrites::ALL, })], }), primitive: wgpu::PrimitiveState { topology: wgpu::PrimitiveTopology::TriangleList, strip_index_format: None, front_face: wgpu::FrontFace::Ccw, cull_mode: Some(wgpu::Face::Back), // Setting this to anything other than Fill requires Features::NON_FILL_POLYGON_MODE polygon_mode: wgpu::PolygonMode::Fill, // Requires Features::DEPTH_CLIP_CONTROL unclipped_depth: false, // Requires Features::CONSERVATIVE_RASTERIZATION conservative: false, }, depth_stencil: depth_format.map(|format| wgpu::DepthStencilState { format, depth_write_enabled: true, depth_compare: wgpu::CompareFunction::Less, stencil: wgpu::StencilState::default(), bias: wgpu::DepthBiasState::default(), }), multisample: wgpu::MultisampleState { count: 1, mask: !0, alpha_to_coverage_enabled: false, }, // If the pipeline will be used with a multiview render pass, this // indicates how many array layers the attachments will have. multiview: None, }) } impl<'a> State<'a> { async fn new(window: &'a Window) -> State<'a> { let size = window.inner_size(); // The instance is a handle to our GPU // BackendBit::PRIMARY => Vulkan + Metal + DX12 + Browser WebGPU let instance = wgpu::Instance::new(wgpu::InstanceDescriptor { backends: wgpu::Backends::PRIMARY, ..Default::default() }); let surface = instance.create_surface(window).unwrap(); let adapter = instance .request_adapter(&wgpu::RequestAdapterOptions { power_preference: wgpu::PowerPreference::default(), compatible_surface: Some(&surface), force_fallback_adapter: false, }) .await .unwrap(); let (device, queue) = adapter .request_device( &wgpu::DeviceDescriptor { label: None, required_features: wgpu::Features::empty(), // WebGL doesn't support all of wgpu's features, so if // we're building for the web we'll have to disable some. required_limits: if cfg!(target_arch = "wasm32") { wgpu::Limits::downlevel_webgl2_defaults() } else { wgpu::Limits::default() }, }, None, // Trace path ) .await .unwrap(); let surface_caps = surface.get_capabilities(&adapter); // Shader code in this tutorial assumes an Srgb surface texture. Using a different // one will result all the colors comming out darker. If you want to support non // Srgb surfaces, you'll need to account for that when drawing to the frame. let surface_format = surface_caps .formats .iter() .copied() .find(|f| f.is_srgb()) .unwrap_or(surface_caps.formats[0]); let config = wgpu::SurfaceConfiguration { usage: wgpu::TextureUsages::RENDER_ATTACHMENT, format: surface_format, width: size.width, height: size.height, present_mode: surface_caps.present_modes[0], alpha_mode: surface_caps.alpha_modes[0], view_formats: vec![], desired_maximum_frame_latency: 2, }; let texture_bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { entries: &[ wgpu::BindGroupLayoutEntry { binding: 0, visibility: wgpu::ShaderStages::FRAGMENT, ty: wgpu::BindingType::Texture { multisampled: false, sample_type: wgpu::TextureSampleType::Float { filterable: true }, view_dimension: wgpu::TextureViewDimension::D2, }, count: None, }, wgpu::BindGroupLayoutEntry { binding: 1, visibility: wgpu::ShaderStages::FRAGMENT, ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering), count: None, }, // normal map wgpu::BindGroupLayoutEntry { binding: 2, visibility: wgpu::ShaderStages::FRAGMENT, ty: wgpu::BindingType::Texture { multisampled: false, sample_type: wgpu::TextureSampleType::Float { filterable: true }, view_dimension: wgpu::TextureViewDimension::D2, }, count: None, }, wgpu::BindGroupLayoutEntry { binding: 3, visibility: wgpu::ShaderStages::FRAGMENT, ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering), count: None, }, ], label: Some("texture_bind_group_layout"), }); let camera = Camera { eye: (0.0, 5.0, -10.0).into(), target: (0.0, 0.0, 0.0).into(), up: cgmath::Vector3::unit_y(), aspect: config.width as f32 / config.height as f32, fovy: 45.0, znear: 0.1, zfar: 100.0, }; let camera_controller = CameraController::new(0.2); let mut camera_uniform = CameraUniform::new(); camera_uniform.update_view_proj(&camera); let camera_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Camera Buffer"), contents: bytemuck::cast_slice(&[camera_uniform]), usage: wgpu::BufferUsages::UNIFORM | wgpu::BufferUsages::COPY_DST, }); const SPACE_BETWEEN: f32 = 3.0; let instances = (0..NUM_INSTANCES_PER_ROW) .flat_map(|z| { (0..NUM_INSTANCES_PER_ROW).map(move |x| { let x = SPACE_BETWEEN * (x as f32 - NUM_INSTANCES_PER_ROW as f32 / 2.0); let z = SPACE_BETWEEN * (z as f32 - NUM_INSTANCES_PER_ROW as f32 / 2.0); let position = cgmath::Vector3 { x, y: 0.0, z }; let rotation = if position.is_zero() { cgmath::Quaternion::from_axis_angle( cgmath::Vector3::unit_z(), cgmath::Deg(0.0), ) } else { cgmath::Quaternion::from_axis_angle(position.normalize(), cgmath::Deg(45.0)) }; Instance { position, rotation } }) }) .collect::>(); let instance_data = instances.iter().map(Instance::to_raw).collect::>(); let instance_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Instance Buffer"), contents: bytemuck::cast_slice(&instance_data), usage: wgpu::BufferUsages::VERTEX, }); let camera_bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { entries: &[wgpu::BindGroupLayoutEntry { binding: 0, visibility: wgpu::ShaderStages::VERTEX | wgpu::ShaderStages::FRAGMENT, ty: wgpu::BindingType::Buffer { ty: wgpu::BufferBindingType::Uniform, has_dynamic_offset: false, min_binding_size: None, }, count: None, }], label: Some("camera_bind_group_layout"), }); let camera_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor { layout: &camera_bind_group_layout, entries: &[wgpu::BindGroupEntry { binding: 0, resource: camera_buffer.as_entire_binding(), }], label: Some("camera_bind_group"), }); let obj_model = resources::load_model("cube.obj", &device, &queue, &texture_bind_group_layout) .await .unwrap(); let light_uniform = LightUniform { position: [2.0, 2.0, 2.0], _padding: 0, color: [1.0, 1.0, 1.0], _padding2: 0, }; let light_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Light VB"), contents: bytemuck::cast_slice(&[light_uniform]), usage: wgpu::BufferUsages::UNIFORM | wgpu::BufferUsages::COPY_DST, }); let light_bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { entries: &[wgpu::BindGroupLayoutEntry { binding: 0, visibility: wgpu::ShaderStages::VERTEX | wgpu::ShaderStages::FRAGMENT, ty: wgpu::BindingType::Buffer { ty: wgpu::BufferBindingType::Uniform, has_dynamic_offset: false, min_binding_size: None, }, count: None, }], label: None, }); let light_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor { layout: &light_bind_group_layout, entries: &[wgpu::BindGroupEntry { binding: 0, resource: light_buffer.as_entire_binding(), }], label: None, }); let depth_texture = texture::Texture::create_depth_texture(&device, &config, "depth_texture"); let render_pipeline_layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor { label: Some("Render Pipeline Layout"), bind_group_layouts: &[ &texture_bind_group_layout, &camera_bind_group_layout, &light_bind_group_layout, ], push_constant_ranges: &[], }); log::info!("Render Pipeline"); let render_pipeline = { let shader = wgpu::ShaderModuleDescriptor { label: Some("Normal Shader"), source: wgpu::ShaderSource::Wgsl(include_str!("shader.wgsl").into()), }; create_render_pipeline( &device, &render_pipeline_layout, config.format, Some(texture::Texture::DEPTH_FORMAT), &[model::ModelVertex::desc(), InstanceRaw::desc()], shader, ) }; log::info!("Light Render Pipeline"); let light_render_pipeline = { let layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor { label: Some("Light Pipeline Layout"), bind_group_layouts: &[&camera_bind_group_layout, &light_bind_group_layout], push_constant_ranges: &[], }); let shader = wgpu::ShaderModuleDescriptor { label: Some("Light Shader"), source: wgpu::ShaderSource::Wgsl(include_str!("light.wgsl").into()), }; create_render_pipeline( &device, &layout, config.format, Some(texture::Texture::DEPTH_FORMAT), &[model::ModelVertex::desc()], shader, ) }; let debug_material = { let diffuse_bytes = include_bytes!("../res/cobble-diffuse.png"); let normal_bytes = include_bytes!("../res/cobble-normal.png"); let diffuse_texture = texture::Texture::from_bytes( &device, &queue, diffuse_bytes, "res/alt-diffuse.png", false, ) .unwrap(); let normal_texture = texture::Texture::from_bytes( &device, &queue, normal_bytes, "res/alt-normal.png", true, ) .unwrap(); model::Material::new( &device, "alt-material", diffuse_texture, normal_texture, &texture_bind_group_layout, ) }; Self { window, surface, device, queue, config, render_pipeline, obj_model, camera, camera_controller, camera_buffer, camera_bind_group, camera_uniform, instances, instance_buffer, depth_texture, size, light_uniform, light_buffer, light_bind_group, light_render_pipeline, #[allow(dead_code)] debug_material, } } pub fn window(&self) -> &Window { &self.window } fn resize(&mut self, new_size: winit::dpi::PhysicalSize) { if new_size.width > 0 && new_size.height > 0 { self.camera.aspect = self.config.width as f32 / self.config.height as f32; self.size = new_size; self.config.width = new_size.width; self.config.height = new_size.height; self.surface.configure(&self.device, &self.config); self.depth_texture = texture::Texture::create_depth_texture(&self.device, &self.config, "depth_texture"); } } fn input(&mut self, event: &WindowEvent) -> bool { self.camera_controller.process_events(event) } fn update(&mut self) { self.camera_controller.update_camera(&mut self.camera); self.camera_uniform.update_view_proj(&self.camera); self.queue.write_buffer( &self.camera_buffer, 0, bytemuck::cast_slice(&[self.camera_uniform]), ); // Update the light let old_position: cgmath::Vector3<_> = self.light_uniform.position.into(); self.light_uniform.position = (cgmath::Quaternion::from_axis_angle((0.0, 1.0, 0.0).into(), cgmath::Deg(1.0)) * old_position) .into(); self.queue.write_buffer( &self.light_buffer, 0, bytemuck::cast_slice(&[self.light_uniform]), ); } fn render(&mut self) -> Result<(), wgpu::SurfaceError> { let output = self.surface.get_current_texture()?; let view = output .texture .create_view(&wgpu::TextureViewDescriptor::default()); let mut encoder = self .device .create_command_encoder(&wgpu::CommandEncoderDescriptor { label: Some("Render Encoder"), }); { let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor { label: Some("Render Pass"), color_attachments: &[Some(wgpu::RenderPassColorAttachment { view: &view, resolve_target: None, ops: wgpu::Operations { load: wgpu::LoadOp::Clear(wgpu::Color { r: 0.1, g: 0.2, b: 0.3, a: 1.0, }), store: wgpu::StoreOp::Store, }, })], depth_stencil_attachment: Some(wgpu::RenderPassDepthStencilAttachment { view: &self.depth_texture.view, depth_ops: Some(wgpu::Operations { load: wgpu::LoadOp::Clear(1.0), store: wgpu::StoreOp::Store, }), stencil_ops: None, }), occlusion_query_set: None, timestamp_writes: None, }); render_pass.set_vertex_buffer(1, self.instance_buffer.slice(..)); render_pass.set_pipeline(&self.light_render_pipeline); render_pass.draw_light_model( &self.obj_model, &self.camera_bind_group, &self.light_bind_group, ); render_pass.set_pipeline(&self.render_pipeline); render_pass.draw_model_instanced( &self.obj_model, 0..self.instances.len() as u32, &self.camera_bind_group, &self.light_bind_group, ); } self.queue.submit(iter::once(encoder.finish())); output.present(); Ok(()) } } #[cfg_attr(target_arch = "wasm32", wasm_bindgen(start))] pub async fn run() { cfg_if::cfg_if! { if #[cfg(target_arch = "wasm32")] { std::panic::set_hook(Box::new(console_error_panic_hook::hook)); console_log::init_with_level(log::Level::Info).expect("Could't initialize logger"); } else { env_logger::init(); } } let event_loop = EventLoop::new().unwrap(); let title = env!("CARGO_PKG_NAME"); let window = winit::window::WindowBuilder::new() .with_title(title) .build(&event_loop) .unwrap(); #[cfg(target_arch = "wasm32")] { // Winit prevents sizing with CSS, so we have to set // the size manually when on web. use winit::dpi::PhysicalSize; let _ = window.request_inner_size(PhysicalSize::new(450, 400)); use winit::platform::web::WindowExtWebSys; web_sys::window() .and_then(|win| win.document()) .and_then(|doc| { let dst = doc.get_element_by_id("wasm-example")?; let canvas = web_sys::Element::from(window.canvas()?); dst.append_child(&canvas).ok()?; Some(()) }) .expect("Couldn't append canvas to document body."); } // State::new uses async code, so we're going to wait for it to finish let mut state = State::new(&window).await; event_loop .run(move |event, control_flow| { match event { Event::WindowEvent { ref event, window_id, } if window_id == state.window().id() => { if !state.input(event) { match event { WindowEvent::CloseRequested | WindowEvent::KeyboardInput { event: KeyEvent { state: ElementState::Pressed, physical_key: PhysicalKey::Code(KeyCode::Escape), .. }, .. } => control_flow.exit(), WindowEvent::Resized(physical_size) => { state.resize(*physical_size); } WindowEvent::RedrawRequested => { // This tells winit that we want another frame after this one state.window().request_redraw(); state.update(); match state.render() { Ok(_) => {} // Reconfigure the surface if it's lost or outdated Err( wgpu::SurfaceError::Lost | wgpu::SurfaceError::Outdated, ) => state.resize(state.size), // The system is out of memory, we should probably quit Err(wgpu::SurfaceError::OutOfMemory) => { log::error!("OutOfMemory"); control_flow.exit(); } // This happens when the a frame takes too long to present Err(wgpu::SurfaceError::Timeout) => { log::warn!("Surface timeout") } } } _ => {} } } } _ => {} } }) .unwrap(); }