learn-wgpu/code/showcase/mouse-picking/src/resources.rs

256 lines
9.3 KiB
Rust
Raw Normal View History

2022-12-10 22:48:32 +00:00
use std::io::{BufReader, Cursor};
use cfg_if::cfg_if;
use wgpu::util::DeviceExt;
use crate::{math::BoundingBox, model, texture};
#[cfg(target_arch = "wasm32")]
fn format_url(file_name: &str) -> reqwest::Url {
let window = web_sys::window().unwrap();
let location = window.location();
let base = reqwest::Url::parse(&format!(
"{}/{}/",
location.origin().unwrap(),
option_env!("RES_PATH").unwrap_or("res"),
))
.unwrap();
base.join(file_name).unwrap()
}
pub async fn load_string(file_name: &str) -> anyhow::Result<String> {
cfg_if! {
if #[cfg(target_arch = "wasm32")] {
let url = format_url(file_name);
let txt = reqwest::get(url)
.await?
.text()
.await?;
} else {
let path = std::path::Path::new(env!("OUT_DIR"))
.join("res")
.join(file_name);
let txt = std::fs::read_to_string(path)?;
}
}
Ok(txt)
}
pub async fn load_binary(file_name: &str) -> anyhow::Result<Vec<u8>> {
cfg_if! {
if #[cfg(target_arch = "wasm32")] {
let url = format_url(file_name);
let data = reqwest::get(url)
.await?
.bytes()
.await?
.to_vec();
} else {
let path = std::path::Path::new(env!("OUT_DIR"))
.join("res")
.join(file_name);
let data = std::fs::read(path)?;
}
}
Ok(data)
}
pub async fn load_texture(
file_name: &str,
is_normal_map: bool,
device: &wgpu::Device,
queue: &wgpu::Queue,
) -> anyhow::Result<texture::Texture> {
let data = load_binary(file_name).await?;
texture::Texture::from_bytes(device, queue, &data, file_name, is_normal_map)
}
pub async fn load_model(
file_name: &str,
device: &wgpu::Device,
queue: &wgpu::Queue,
layout: &wgpu::BindGroupLayout,
) -> anyhow::Result<model::Model> {
let obj_text = load_string(file_name).await?;
let obj_cursor = Cursor::new(obj_text);
let mut obj_reader = BufReader::new(obj_cursor);
let (models, obj_materials) = tobj::load_obj_buf_async(
&mut obj_reader,
&tobj::LoadOptions {
triangulate: true,
single_index: true,
..Default::default()
},
|p| async move {
let mat_text = load_string(&p).await.unwrap();
tobj::load_mtl_buf(&mut BufReader::new(Cursor::new(mat_text)))
},
)
.await?;
let mut materials = Vec::new();
for m in obj_materials? {
let diffuse_texture = load_texture(&m.diffuse_texture, false, device, queue).await?;
let normal_texture = load_texture(&m.normal_texture, true, device, queue).await?;
materials.push(model::Material::new(
device,
&m.name,
diffuse_texture,
normal_texture,
layout,
));
}
// NEW!
let mut model_bounding_box = BoundingBox {
min: cgmath::Vector3::new(std::f32::INFINITY, std::f32::INFINITY, std::f32::INFINITY),
max: cgmath::Vector3::new(
std::f32::NEG_INFINITY,
std::f32::NEG_INFINITY,
std::f32::NEG_INFINITY,
),
};
let meshes = models
.into_iter()
.map(|m| {
// NEW!
let mut bounding_box = BoundingBox {
min: cgmath::Vector3::new(
std::f32::INFINITY,
std::f32::INFINITY,
std::f32::INFINITY,
),
max: cgmath::Vector3::new(
std::f32::NEG_INFINITY,
std::f32::NEG_INFINITY,
std::f32::NEG_INFINITY,
),
};
let mut vertices = (0..m.mesh.positions.len() / 3)
.map(|i| {
// NEW!
let p = cgmath::vec3(
m.mesh.positions[i * 3],
m.mesh.positions[i * 3 + 1],
m.mesh.positions[i * 3 + 2],
);
model::ModelVertex {
position: p.into(), // UPDATED!
tex_coords: [m.mesh.texcoords[i * 2], m.mesh.texcoords[i * 2 + 1]],
normal: [
m.mesh.normals[i * 3],
m.mesh.normals[i * 3 + 1],
m.mesh.normals[i * 3 + 2],
],
// We'll calculate these later
tangent: [0.0; 3],
bitangent: [0.0; 3],
}
})
.collect::<Vec<_>>();
model_bounding_box.combine(&bounding_box);
let indices = &m.mesh.indices;
let mut triangles_included = vec![0; vertices.len()];
// Calculate tangents and bitangets. We're going to
// use the triangles, so we need to loop through the
// indices in chunks of 3
for c in indices.chunks(3) {
let v0 = vertices[c[0] as usize];
let v1 = vertices[c[1] as usize];
let v2 = vertices[c[2] as usize];
let pos0: cgmath::Vector3<_> = v0.position.into();
let pos1: cgmath::Vector3<_> = v1.position.into();
let pos2: cgmath::Vector3<_> = v2.position.into();
let uv0: cgmath::Vector2<_> = v0.tex_coords.into();
let uv1: cgmath::Vector2<_> = v1.tex_coords.into();
let uv2: cgmath::Vector2<_> = v2.tex_coords.into();
// Calculate the edges of the triangle
let delta_pos1 = pos1 - pos0;
let delta_pos2 = pos2 - pos0;
// This will give us a direction to calculate the
// tangent and bitangent
let delta_uv1 = uv1 - uv0;
let delta_uv2 = uv2 - uv0;
// Solving the following system of equations will
// give us the tangent and bitangent.
// delta_pos1 = delta_uv1.x * T + delta_u.y * B
// delta_pos2 = delta_uv2.x * T + delta_uv2.y * B
// Luckily, the place I found this equation provided
// the solution!
let r = 1.0 / (delta_uv1.x * delta_uv2.y - delta_uv1.y * delta_uv2.x);
let tangent = (delta_pos1 * delta_uv2.y - delta_pos2 * delta_uv1.y) * r;
// We flip the bitangent to enable right-handed normal
// maps with wgpu texture coordinate system
let bitangent = (delta_pos2 * delta_uv1.x - delta_pos1 * delta_uv2.x) * -r;
// We'll use the same tangent/bitangent for each vertex in the triangle
vertices[c[0] as usize].tangent =
(tangent + cgmath::Vector3::from(vertices[c[0] as usize].tangent)).into();
vertices[c[1] as usize].tangent =
(tangent + cgmath::Vector3::from(vertices[c[1] as usize].tangent)).into();
vertices[c[2] as usize].tangent =
(tangent + cgmath::Vector3::from(vertices[c[2] as usize].tangent)).into();
vertices[c[0] as usize].bitangent =
(bitangent + cgmath::Vector3::from(vertices[c[0] as usize].bitangent)).into();
vertices[c[1] as usize].bitangent =
(bitangent + cgmath::Vector3::from(vertices[c[1] as usize].bitangent)).into();
vertices[c[2] as usize].bitangent =
(bitangent + cgmath::Vector3::from(vertices[c[2] as usize].bitangent)).into();
// Used to average the tangents/bitangents
triangles_included[c[0] as usize] += 1;
triangles_included[c[1] as usize] += 1;
triangles_included[c[2] as usize] += 1;
}
// Average the tangents/bitangents
for (i, n) in triangles_included.into_iter().enumerate() {
let denom = 1.0 / n as f32;
let mut v = &mut vertices[i];
v.tangent = (cgmath::Vector3::from(v.tangent) * denom).into();
v.bitangent = (cgmath::Vector3::from(v.bitangent) * denom).into();
}
let vertex_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some(&format!("{:?} Vertex Buffer", file_name)),
contents: bytemuck::cast_slice(&vertices),
usage: wgpu::BufferUsages::VERTEX,
});
let index_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some(&format!("{:?} Index Buffer", file_name)),
contents: bytemuck::cast_slice(&m.mesh.indices),
usage: wgpu::BufferUsages::INDEX,
});
model::Mesh {
name: file_name.to_string(),
vertex_buffer,
index_buffer,
num_elements: m.mesh.indices.len() as u32,
material: m.mesh.material_id.unwrap_or(0),
// NEW!
bounding_box,
}
})
.collect::<Vec<_>>();
Ok(model::Model {
meshes,
materials,
// NEW!
bounding_box: model_bounding_box,
})
}