mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
fdba711d28
Updated `integrations/embeddings`: fixed titles; added links, descriptions Updated `integrations/providers`.
111 lines
3.1 KiB
Plaintext
111 lines
3.1 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Google Vertex AI PaLM \n",
|
|
"\n",
|
|
">[Vertex AI PaLM API](https://cloud.google.com/vertex-ai/docs/generative-ai/learn/overview) is a service on Google Cloud exposing the embedding models. \n",
|
|
"\n",
|
|
"Note: This integration is seperate from the Google PaLM integration.\n",
|
|
"\n",
|
|
"By default, Google Cloud [does not use](https://cloud.google.com/vertex-ai/docs/generative-ai/data-governance#foundation_model_development) Customer Data to train its foundation models as part of Google Cloud`s AI/ML Privacy Commitment. More details about how Google processes data can also be found in [Google's Customer Data Processing Addendum (CDPA)](https://cloud.google.com/terms/data-processing-addendum).\n",
|
|
"\n",
|
|
"To use Vertex AI PaLM you must have the `google-cloud-aiplatform` Python package installed and either:\n",
|
|
"- Have credentials configured for your environment (gcloud, workload identity, etc...)\n",
|
|
"- Store the path to a service account JSON file as the GOOGLE_APPLICATION_CREDENTIALS environment variable\n",
|
|
"\n",
|
|
"This codebase uses the `google.auth` library which first looks for the application credentials variable mentioned above, and then looks for system-level auth.\n",
|
|
"\n",
|
|
"For more information, see: \n",
|
|
"- https://cloud.google.com/docs/authentication/application-default-credentials#GAC\n",
|
|
"- https://googleapis.dev/python/google-auth/latest/reference/google.auth.html#module-google.auth\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"#!pip install google-cloud-aiplatform"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.embeddings import VertexAIEmbeddings"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"embeddings = VertexAIEmbeddings()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"text = \"This is a test document.\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"query_result = embeddings.embed_query(text)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"doc_result = embeddings.embed_documents([text])"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.12"
|
|
},
|
|
"vscode": {
|
|
"interpreter": {
|
|
"hash": "cc99336516f23363341912c6723b01ace86f02e26b4290be1efc0677e2e2ec24"
|
|
}
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|