mirror of
https://github.com/hwchase17/langchain
synced 2024-11-11 19:11:02 +00:00
161 lines
5.6 KiB
Python
161 lines
5.6 KiB
Python
from __future__ import annotations
|
|
|
|
import pathlib
|
|
from io import BytesIO, StringIO
|
|
from typing import Any, Dict, List, Tuple, TypedDict
|
|
|
|
import requests
|
|
from langchain_core.documents import Document
|
|
|
|
|
|
class ElementType(TypedDict):
|
|
"""Element type as typed dict."""
|
|
|
|
url: str
|
|
xpath: str
|
|
content: str
|
|
metadata: Dict[str, str]
|
|
|
|
|
|
class HTMLHeaderTextSplitter:
|
|
"""
|
|
Splitting HTML files based on specified headers.
|
|
Requires lxml package.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
headers_to_split_on: List[Tuple[str, str]],
|
|
return_each_element: bool = False,
|
|
):
|
|
"""Create a new HTMLHeaderTextSplitter.
|
|
|
|
Args:
|
|
headers_to_split_on: list of tuples of headers we want to track mapped to
|
|
(arbitrary) keys for metadata. Allowed header values: h1, h2, h3, h4,
|
|
h5, h6 e.g. [("h1", "Header 1"), ("h2", "Header 2)].
|
|
return_each_element: Return each element w/ associated headers.
|
|
"""
|
|
# Output element-by-element or aggregated into chunks w/ common headers
|
|
self.return_each_element = return_each_element
|
|
self.headers_to_split_on = sorted(headers_to_split_on)
|
|
|
|
def aggregate_elements_to_chunks(
|
|
self, elements: List[ElementType]
|
|
) -> List[Document]:
|
|
"""Combine elements with common metadata into chunks
|
|
|
|
Args:
|
|
elements: HTML element content with associated identifying info and metadata
|
|
"""
|
|
aggregated_chunks: List[ElementType] = []
|
|
|
|
for element in elements:
|
|
if (
|
|
aggregated_chunks
|
|
and aggregated_chunks[-1]["metadata"] == element["metadata"]
|
|
):
|
|
# If the last element in the aggregated list
|
|
# has the same metadata as the current element,
|
|
# append the current content to the last element's content
|
|
aggregated_chunks[-1]["content"] += " \n" + element["content"]
|
|
else:
|
|
# Otherwise, append the current element to the aggregated list
|
|
aggregated_chunks.append(element)
|
|
|
|
return [
|
|
Document(page_content=chunk["content"], metadata=chunk["metadata"])
|
|
for chunk in aggregated_chunks
|
|
]
|
|
|
|
def split_text_from_url(self, url: str) -> List[Document]:
|
|
"""Split HTML from web URL
|
|
|
|
Args:
|
|
url: web URL
|
|
"""
|
|
r = requests.get(url)
|
|
return self.split_text_from_file(BytesIO(r.content))
|
|
|
|
def split_text(self, text: str) -> List[Document]:
|
|
"""Split HTML text string
|
|
|
|
Args:
|
|
text: HTML text
|
|
"""
|
|
return self.split_text_from_file(StringIO(text))
|
|
|
|
def split_text_from_file(self, file: Any) -> List[Document]:
|
|
"""Split HTML file
|
|
|
|
Args:
|
|
file: HTML file
|
|
"""
|
|
try:
|
|
from lxml import etree
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Unable to import lxml, please install with `pip install lxml`."
|
|
) from e
|
|
# use lxml library to parse html document and return xml ElementTree
|
|
# Explicitly encoding in utf-8 allows non-English
|
|
# html files to be processed without garbled characters
|
|
parser = etree.HTMLParser(encoding="utf-8")
|
|
tree = etree.parse(file, parser)
|
|
|
|
# document transformation for "structure-aware" chunking is handled with xsl.
|
|
# see comments in html_chunks_with_headers.xslt for more detailed information.
|
|
xslt_path = pathlib.Path(__file__).parent / "xsl/html_chunks_with_headers.xslt"
|
|
xslt_tree = etree.parse(xslt_path)
|
|
transform = etree.XSLT(xslt_tree)
|
|
result = transform(tree)
|
|
result_dom = etree.fromstring(str(result))
|
|
|
|
# create filter and mapping for header metadata
|
|
header_filter = [header[0] for header in self.headers_to_split_on]
|
|
header_mapping = dict(self.headers_to_split_on)
|
|
|
|
# map xhtml namespace prefix
|
|
ns_map = {"h": "http://www.w3.org/1999/xhtml"}
|
|
|
|
# build list of elements from DOM
|
|
elements = []
|
|
for element in result_dom.findall("*//*", ns_map):
|
|
if element.findall("*[@class='headers']") or element.findall(
|
|
"*[@class='chunk']"
|
|
):
|
|
elements.append(
|
|
ElementType(
|
|
url=file,
|
|
xpath="".join(
|
|
[
|
|
node.text or ""
|
|
for node in element.findall("*[@class='xpath']", ns_map)
|
|
]
|
|
),
|
|
content="".join(
|
|
[
|
|
node.text or ""
|
|
for node in element.findall("*[@class='chunk']", ns_map)
|
|
]
|
|
),
|
|
metadata={
|
|
# Add text of specified headers to metadata using header
|
|
# mapping.
|
|
header_mapping[node.tag]: node.text or ""
|
|
for node in filter(
|
|
lambda x: x.tag in header_filter,
|
|
element.findall("*[@class='headers']/*", ns_map),
|
|
)
|
|
},
|
|
)
|
|
)
|
|
|
|
if not self.return_each_element:
|
|
return self.aggregate_elements_to_chunks(elements)
|
|
else:
|
|
return [
|
|
Document(page_content=chunk["content"], metadata=chunk["metadata"])
|
|
for chunk in elements
|
|
]
|