mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
642975dd9f
Description: Added support for AI21 new model - Jamba Twitter handle: https://github.com/AI21Labs --------- Co-authored-by: Asaf Gardin <asafg@ai21.com> Co-authored-by: Erick Friis <erick@langchain.dev>
164 lines
5.0 KiB
Python
164 lines
5.0 KiB
Python
import asyncio
|
|
from functools import partial
|
|
from typing import Any, Dict, List, Mapping, Optional
|
|
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForLLMRun,
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models.chat_models import BaseChatModel
|
|
from langchain_core.messages import (
|
|
BaseMessage,
|
|
)
|
|
from langchain_core.outputs import ChatGeneration, ChatResult
|
|
from langchain_core.pydantic_v1 import root_validator
|
|
|
|
from langchain_ai21.ai21_base import AI21Base
|
|
from langchain_ai21.chat.chat_adapter import ChatAdapter
|
|
from langchain_ai21.chat.chat_factory import create_chat_adapter
|
|
|
|
|
|
class ChatAI21(BaseChatModel, AI21Base):
|
|
"""ChatAI21 chat model.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_ai21 import ChatAI21
|
|
|
|
|
|
model = ChatAI21()
|
|
"""
|
|
|
|
model: str
|
|
"""Model type you wish to interact with.
|
|
You can view the options at https://github.com/AI21Labs/ai21-python?tab=readme-ov-file#model-types"""
|
|
num_results: int = 1
|
|
"""The number of responses to generate for a given prompt."""
|
|
|
|
max_tokens: int = 16
|
|
"""The maximum number of tokens to generate for each response."""
|
|
|
|
min_tokens: int = 0
|
|
"""The minimum number of tokens to generate for each response."""
|
|
|
|
temperature: float = 0.7
|
|
"""A value controlling the "creativity" of the model's responses."""
|
|
|
|
top_p: float = 1
|
|
"""A value controlling the diversity of the model's responses."""
|
|
|
|
top_k_return: int = 0
|
|
"""The number of top-scoring tokens to consider for each generation step."""
|
|
|
|
frequency_penalty: Optional[Any] = None
|
|
"""A penalty applied to tokens that are frequently generated."""
|
|
|
|
presence_penalty: Optional[Any] = None
|
|
""" A penalty applied to tokens that are already present in the prompt."""
|
|
|
|
count_penalty: Optional[Any] = None
|
|
"""A penalty applied to tokens based on their frequency
|
|
in the generated responses."""
|
|
|
|
n: int = 1
|
|
"""Number of chat completions to generate for each prompt."""
|
|
|
|
_chat_adapter: ChatAdapter
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
values = super().validate_environment(values)
|
|
model = values.get("model")
|
|
|
|
values["_chat_adapter"] = create_chat_adapter(model) # type: ignore
|
|
|
|
return values
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
arbitrary_types_allowed = True
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of chat model."""
|
|
return "chat-ai21"
|
|
|
|
@property
|
|
def _default_params(self) -> Mapping[str, Any]:
|
|
base_params = {
|
|
"model": self.model,
|
|
"num_results": self.num_results,
|
|
"max_tokens": self.max_tokens,
|
|
"min_tokens": self.min_tokens,
|
|
"temperature": self.temperature,
|
|
"top_p": self.top_p,
|
|
"top_k_return": self.top_k_return,
|
|
"n": self.n,
|
|
}
|
|
|
|
if self.count_penalty is not None:
|
|
base_params["count_penalty"] = self.count_penalty.to_dict()
|
|
|
|
if self.frequency_penalty is not None:
|
|
base_params["frequency_penalty"] = self.frequency_penalty.to_dict()
|
|
|
|
if self.presence_penalty is not None:
|
|
base_params["presence_penalty"] = self.presence_penalty.to_dict()
|
|
|
|
return base_params
|
|
|
|
def _build_params_for_request(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
**kwargs: Any,
|
|
) -> Mapping[str, Any]:
|
|
params = {}
|
|
converted_messages = self._chat_adapter.convert_messages(messages)
|
|
|
|
if stop is not None:
|
|
if "stop" in kwargs:
|
|
raise ValueError("stop is defined in both stop and kwargs")
|
|
params["stop_sequences"] = stop
|
|
|
|
return {
|
|
**converted_messages,
|
|
**self._default_params,
|
|
**params,
|
|
**kwargs,
|
|
}
|
|
|
|
def _generate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
params = self._build_params_for_request(messages=messages, stop=stop, **kwargs)
|
|
messages = self._chat_adapter.call(self.client, **params)
|
|
generations = [ChatGeneration(message=message) for message in messages]
|
|
|
|
return ChatResult(generations=generations)
|
|
|
|
async def _agenerate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
return await asyncio.get_running_loop().run_in_executor(
|
|
None, partial(self._generate, **kwargs), messages, stop, run_manager
|
|
)
|
|
|
|
def _get_system_message_from_message(self, message: BaseMessage) -> str:
|
|
if not isinstance(message.content, str):
|
|
raise ValueError(
|
|
f"System Message must be of type str. Got {type(message.content)}"
|
|
)
|
|
|
|
return message.content
|