mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
154 lines
5.3 KiB
Python
154 lines
5.3 KiB
Python
import logging
|
|
from typing import Any, Dict, List, Mapping, Optional
|
|
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models.llms import LLM
|
|
from langchain_core.pydantic_v1 import Extra, Field, SecretStr, root_validator
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
|
|
|
from langchain_community.llms.utils import enforce_stop_tokens
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class Petals(LLM):
|
|
"""Petals Bloom models.
|
|
|
|
To use, you should have the ``petals`` python package installed, and the
|
|
environment variable ``HUGGINGFACE_API_KEY`` set with your API key.
|
|
|
|
Any parameters that are valid to be passed to the call can be passed
|
|
in, even if not explicitly saved on this class.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.llms import petals
|
|
petals = Petals()
|
|
|
|
"""
|
|
|
|
client: Any
|
|
"""The client to use for the API calls."""
|
|
|
|
tokenizer: Any
|
|
"""The tokenizer to use for the API calls."""
|
|
|
|
model_name: str = "bigscience/bloom-petals"
|
|
"""The model to use."""
|
|
|
|
temperature: float = 0.7
|
|
"""What sampling temperature to use"""
|
|
|
|
max_new_tokens: int = 256
|
|
"""The maximum number of new tokens to generate in the completion."""
|
|
|
|
top_p: float = 0.9
|
|
"""The cumulative probability for top-p sampling."""
|
|
|
|
top_k: Optional[int] = None
|
|
"""The number of highest probability vocabulary tokens
|
|
to keep for top-k-filtering."""
|
|
|
|
do_sample: bool = True
|
|
"""Whether or not to use sampling; use greedy decoding otherwise."""
|
|
|
|
max_length: Optional[int] = None
|
|
"""The maximum length of the sequence to be generated."""
|
|
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
"""Holds any model parameters valid for `create` call
|
|
not explicitly specified."""
|
|
|
|
huggingface_api_key: Optional[SecretStr] = None
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic config."""
|
|
|
|
extra = Extra.forbid
|
|
|
|
@root_validator(pre=True)
|
|
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""Build extra kwargs from additional params that were passed in."""
|
|
all_required_field_names = {field.alias for field in cls.__fields__.values()}
|
|
|
|
extra = values.get("model_kwargs", {})
|
|
for field_name in list(values):
|
|
if field_name not in all_required_field_names:
|
|
if field_name in extra:
|
|
raise ValueError(f"Found {field_name} supplied twice.")
|
|
logger.warning(
|
|
f"""WARNING! {field_name} is not default parameter.
|
|
{field_name} was transferred to model_kwargs.
|
|
Please confirm that {field_name} is what you intended."""
|
|
)
|
|
extra[field_name] = values.pop(field_name)
|
|
values["model_kwargs"] = extra
|
|
return values
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key and python package exists in environment."""
|
|
huggingface_api_key = convert_to_secret_str(
|
|
get_from_dict_or_env(values, "huggingface_api_key", "HUGGINGFACE_API_KEY")
|
|
)
|
|
try:
|
|
from petals import AutoDistributedModelForCausalLM
|
|
from transformers import AutoTokenizer
|
|
|
|
model_name = values["model_name"]
|
|
values["tokenizer"] = AutoTokenizer.from_pretrained(model_name)
|
|
values["client"] = AutoDistributedModelForCausalLM.from_pretrained(
|
|
model_name
|
|
)
|
|
values["huggingface_api_key"] = huggingface_api_key.get_secret_value()
|
|
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import transformers or petals python package."
|
|
"Please install with `pip install -U transformers petals`."
|
|
)
|
|
return values
|
|
|
|
@property
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
"""Get the default parameters for calling Petals API."""
|
|
normal_params = {
|
|
"temperature": self.temperature,
|
|
"max_new_tokens": self.max_new_tokens,
|
|
"top_p": self.top_p,
|
|
"top_k": self.top_k,
|
|
"do_sample": self.do_sample,
|
|
"max_length": self.max_length,
|
|
}
|
|
return {**normal_params, **self.model_kwargs}
|
|
|
|
@property
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return {**{"model_name": self.model_name}, **self._default_params}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "petals"
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Call the Petals API."""
|
|
params = self._default_params
|
|
params = {**params, **kwargs}
|
|
inputs = self.tokenizer(prompt, return_tensors="pt")["input_ids"]
|
|
outputs = self.client.generate(inputs, **params)
|
|
text = self.tokenizer.decode(outputs[0])
|
|
if stop is not None:
|
|
# I believe this is required since the stop tokens
|
|
# are not enforced by the model parameters
|
|
text = enforce_stop_tokens(text, stop)
|
|
return text
|