mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
d628a80a5d
- **Description:** added the conversational task to hugginFace endpoint in order to use models designed for chatbot programming. - **Dependencies:** None --------- Co-authored-by: Alessio Serra (ext.) <alessio.serra@partner.bmw.de> Co-authored-by: Harrison Chase <hw.chase.17@gmail.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
164 lines
5.5 KiB
Python
164 lines
5.5 KiB
Python
from typing import Any, Dict, List, Mapping, Optional
|
|
|
|
import requests
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models.llms import LLM
|
|
from langchain_core.pydantic_v1 import Extra, root_validator
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
from langchain_community.llms.utils import enforce_stop_tokens
|
|
|
|
VALID_TASKS = (
|
|
"text2text-generation",
|
|
"text-generation",
|
|
"summarization",
|
|
"conversational",
|
|
)
|
|
|
|
|
|
class HuggingFaceEndpoint(LLM):
|
|
"""HuggingFace Endpoint models.
|
|
|
|
To use, you should have the ``huggingface_hub`` python package installed, and the
|
|
environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass
|
|
it as a named parameter to the constructor.
|
|
|
|
Only supports `text-generation` and `text2text-generation` for now.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.llms import HuggingFaceEndpoint
|
|
endpoint_url = (
|
|
"https://abcdefghijklmnop.us-east-1.aws.endpoints.huggingface.cloud"
|
|
)
|
|
hf = HuggingFaceEndpoint(
|
|
endpoint_url=endpoint_url,
|
|
huggingfacehub_api_token="my-api-key"
|
|
)
|
|
"""
|
|
|
|
endpoint_url: str = ""
|
|
"""Endpoint URL to use."""
|
|
task: Optional[str] = None
|
|
"""Task to call the model with.
|
|
Should be a task that returns `generated_text` or `summary_text`."""
|
|
model_kwargs: Optional[dict] = None
|
|
"""Keyword arguments to pass to the model."""
|
|
|
|
huggingfacehub_api_token: Optional[str] = None
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key and python package exists in environment."""
|
|
huggingfacehub_api_token = get_from_dict_or_env(
|
|
values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN"
|
|
)
|
|
try:
|
|
from huggingface_hub.hf_api import HfApi
|
|
|
|
try:
|
|
HfApi(
|
|
endpoint="https://huggingface.co", # Can be a Private Hub endpoint.
|
|
token=huggingfacehub_api_token,
|
|
).whoami()
|
|
except Exception as e:
|
|
raise ValueError(
|
|
"Could not authenticate with huggingface_hub. "
|
|
"Please check your API token."
|
|
) from e
|
|
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import huggingface_hub python package. "
|
|
"Please install it with `pip install huggingface_hub`."
|
|
)
|
|
values["huggingfacehub_api_token"] = huggingfacehub_api_token
|
|
return values
|
|
|
|
@property
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
_model_kwargs = self.model_kwargs or {}
|
|
return {
|
|
**{"endpoint_url": self.endpoint_url, "task": self.task},
|
|
**{"model_kwargs": _model_kwargs},
|
|
}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "huggingface_endpoint"
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Call out to HuggingFace Hub's inference endpoint.
|
|
|
|
Args:
|
|
prompt: The prompt to pass into the model.
|
|
stop: Optional list of stop words to use when generating.
|
|
|
|
Returns:
|
|
The string generated by the model.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
response = hf("Tell me a joke.")
|
|
"""
|
|
_model_kwargs = self.model_kwargs or {}
|
|
|
|
# payload samples
|
|
params = {**_model_kwargs, **kwargs}
|
|
parameter_payload = {"inputs": prompt, "parameters": params}
|
|
|
|
# HTTP headers for authorization
|
|
headers = {
|
|
"Authorization": f"Bearer {self.huggingfacehub_api_token}",
|
|
"Content-Type": "application/json",
|
|
}
|
|
|
|
# send request
|
|
try:
|
|
response = requests.post(
|
|
self.endpoint_url, headers=headers, json=parameter_payload
|
|
)
|
|
except requests.exceptions.RequestException as e: # This is the correct syntax
|
|
raise ValueError(f"Error raised by inference endpoint: {e}")
|
|
generated_text = response.json()
|
|
if "error" in generated_text:
|
|
raise ValueError(
|
|
f"Error raised by inference API: {generated_text['error']}"
|
|
)
|
|
if self.task == "text-generation":
|
|
text = generated_text[0]["generated_text"]
|
|
# Remove prompt if included in generated text.
|
|
if text.startswith(prompt):
|
|
text = text[len(prompt) :]
|
|
elif self.task == "text2text-generation":
|
|
text = generated_text[0]["generated_text"]
|
|
elif self.task == "summarization":
|
|
text = generated_text[0]["summary_text"]
|
|
elif self.task == "conversational":
|
|
text = generated_text["response"][1]
|
|
else:
|
|
raise ValueError(
|
|
f"Got invalid task {self.task}, "
|
|
f"currently only {VALID_TASKS} are supported"
|
|
)
|
|
if stop is not None:
|
|
# This is a bit hacky, but I can't figure out a better way to enforce
|
|
# stop tokens when making calls to huggingface_hub.
|
|
text = enforce_stop_tokens(text, stop)
|
|
return text
|