mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
3a2eb6e12b
Added noqa for existing prints. Can slowly remove / will prevent more being intro'd
273 lines
8.9 KiB
Python
273 lines
8.9 KiB
Python
import base64
|
|
import json
|
|
import logging
|
|
import subprocess
|
|
import textwrap
|
|
import time
|
|
from typing import Any, Dict, List, Mapping, Optional
|
|
|
|
import requests
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models.llms import LLM
|
|
from langchain_core.pydantic_v1 import Extra, Field, root_validator
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
DEFAULT_NUM_TRIES = 10
|
|
DEFAULT_SLEEP_TIME = 4
|
|
|
|
|
|
class Beam(LLM):
|
|
"""Beam API for gpt2 large language model.
|
|
|
|
To use, you should have the ``beam-sdk`` python package installed,
|
|
and the environment variable ``BEAM_CLIENT_ID`` set with your client id
|
|
and ``BEAM_CLIENT_SECRET`` set with your client secret. Information on how
|
|
to get this is available here: https://docs.beam.cloud/account/api-keys.
|
|
|
|
The wrapper can then be called as follows, where the name, cpu, memory, gpu,
|
|
python version, and python packages can be updated accordingly. Once deployed,
|
|
the instance can be called.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
llm = Beam(model_name="gpt2",
|
|
name="langchain-gpt2",
|
|
cpu=8,
|
|
memory="32Gi",
|
|
gpu="A10G",
|
|
python_version="python3.8",
|
|
python_packages=[
|
|
"diffusers[torch]>=0.10",
|
|
"transformers",
|
|
"torch",
|
|
"pillow",
|
|
"accelerate",
|
|
"safetensors",
|
|
"xformers",],
|
|
max_length=50)
|
|
llm._deploy()
|
|
call_result = llm._call(input)
|
|
|
|
"""
|
|
|
|
model_name: str = ""
|
|
name: str = ""
|
|
cpu: str = ""
|
|
memory: str = ""
|
|
gpu: str = ""
|
|
python_version: str = ""
|
|
python_packages: List[str] = []
|
|
max_length: str = ""
|
|
url: str = ""
|
|
"""model endpoint to use"""
|
|
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
"""Holds any model parameters valid for `create` call not
|
|
explicitly specified."""
|
|
|
|
beam_client_id: str = ""
|
|
beam_client_secret: str = ""
|
|
app_id: Optional[str] = None
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic config."""
|
|
|
|
extra = Extra.forbid
|
|
|
|
@root_validator(pre=True)
|
|
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""Build extra kwargs from additional params that were passed in."""
|
|
all_required_field_names = {field.alias for field in cls.__fields__.values()}
|
|
|
|
extra = values.get("model_kwargs", {})
|
|
for field_name in list(values):
|
|
if field_name not in all_required_field_names:
|
|
if field_name in extra:
|
|
raise ValueError(f"Found {field_name} supplied twice.")
|
|
logger.warning(
|
|
f"""{field_name} was transferred to model_kwargs.
|
|
Please confirm that {field_name} is what you intended."""
|
|
)
|
|
extra[field_name] = values.pop(field_name)
|
|
values["model_kwargs"] = extra
|
|
return values
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key and python package exists in environment."""
|
|
beam_client_id = get_from_dict_or_env(
|
|
values, "beam_client_id", "BEAM_CLIENT_ID"
|
|
)
|
|
beam_client_secret = get_from_dict_or_env(
|
|
values, "beam_client_secret", "BEAM_CLIENT_SECRET"
|
|
)
|
|
values["beam_client_id"] = beam_client_id
|
|
values["beam_client_secret"] = beam_client_secret
|
|
return values
|
|
|
|
@property
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return {
|
|
"model_name": self.model_name,
|
|
"name": self.name,
|
|
"cpu": self.cpu,
|
|
"memory": self.memory,
|
|
"gpu": self.gpu,
|
|
"python_version": self.python_version,
|
|
"python_packages": self.python_packages,
|
|
"max_length": self.max_length,
|
|
"model_kwargs": self.model_kwargs,
|
|
}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "beam"
|
|
|
|
def app_creation(self) -> None:
|
|
"""Creates a Python file which will contain your Beam app definition."""
|
|
script = textwrap.dedent(
|
|
"""\
|
|
import beam
|
|
|
|
# The environment your code will run on
|
|
app = beam.App(
|
|
name="{name}",
|
|
cpu={cpu},
|
|
memory="{memory}",
|
|
gpu="{gpu}",
|
|
python_version="{python_version}",
|
|
python_packages={python_packages},
|
|
)
|
|
|
|
app.Trigger.RestAPI(
|
|
inputs={{"prompt": beam.Types.String(), "max_length": beam.Types.String()}},
|
|
outputs={{"text": beam.Types.String()}},
|
|
handler="run.py:beam_langchain",
|
|
)
|
|
|
|
"""
|
|
)
|
|
|
|
script_name = "app.py"
|
|
with open(script_name, "w") as file:
|
|
file.write(
|
|
script.format(
|
|
name=self.name,
|
|
cpu=self.cpu,
|
|
memory=self.memory,
|
|
gpu=self.gpu,
|
|
python_version=self.python_version,
|
|
python_packages=self.python_packages,
|
|
)
|
|
)
|
|
|
|
def run_creation(self) -> None:
|
|
"""Creates a Python file which will be deployed on beam."""
|
|
script = textwrap.dedent(
|
|
"""
|
|
import os
|
|
import transformers
|
|
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
|
|
|
model_name = "{model_name}"
|
|
|
|
def beam_langchain(**inputs):
|
|
prompt = inputs["prompt"]
|
|
length = inputs["max_length"]
|
|
|
|
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
|
model = GPT2LMHeadModel.from_pretrained(model_name)
|
|
encodedPrompt = tokenizer.encode(prompt, return_tensors='pt')
|
|
outputs = model.generate(encodedPrompt, max_length=int(length),
|
|
do_sample=True, pad_token_id=tokenizer.eos_token_id)
|
|
output = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
print(output) # noqa: T201
|
|
return {{"text": output}}
|
|
|
|
"""
|
|
)
|
|
|
|
script_name = "run.py"
|
|
with open(script_name, "w") as file:
|
|
file.write(script.format(model_name=self.model_name))
|
|
|
|
def _deploy(self) -> str:
|
|
"""Call to Beam."""
|
|
try:
|
|
import beam # type: ignore
|
|
|
|
if beam.__path__ == "":
|
|
raise ImportError
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import beam python package. "
|
|
"Please install it with `curl "
|
|
"https://raw.githubusercontent.com/slai-labs"
|
|
"/get-beam/main/get-beam.sh -sSfL | sh`."
|
|
)
|
|
self.app_creation()
|
|
self.run_creation()
|
|
|
|
process = subprocess.run(
|
|
"beam deploy app.py", shell=True, capture_output=True, text=True
|
|
)
|
|
|
|
if process.returncode == 0:
|
|
output = process.stdout
|
|
logger.info(output)
|
|
lines = output.split("\n")
|
|
|
|
for line in lines:
|
|
if line.startswith(" i Send requests to: https://apps.beam.cloud/"):
|
|
self.app_id = line.split("/")[-1]
|
|
self.url = line.split(":")[1].strip()
|
|
return self.app_id
|
|
|
|
raise ValueError(
|
|
f"""Failed to retrieve the appID from the deployment output.
|
|
Deployment output: {output}"""
|
|
)
|
|
else:
|
|
raise ValueError(f"Deployment failed. Error: {process.stderr}")
|
|
|
|
@property
|
|
def authorization(self) -> str:
|
|
if self.beam_client_id:
|
|
credential_str = self.beam_client_id + ":" + self.beam_client_secret
|
|
else:
|
|
credential_str = self.beam_client_secret
|
|
return base64.b64encode(credential_str.encode()).decode()
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[list] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Call to Beam."""
|
|
url = "https://apps.beam.cloud/" + self.app_id if self.app_id else self.url
|
|
payload = {"prompt": prompt, "max_length": self.max_length}
|
|
payload.update(kwargs)
|
|
headers = {
|
|
"Accept": "*/*",
|
|
"Accept-Encoding": "gzip, deflate",
|
|
"Authorization": "Basic " + self.authorization,
|
|
"Connection": "keep-alive",
|
|
"Content-Type": "application/json",
|
|
}
|
|
|
|
for _ in range(DEFAULT_NUM_TRIES):
|
|
request = requests.post(url, headers=headers, data=json.dumps(payload))
|
|
if request.status_code == 200:
|
|
return request.json()["text"]
|
|
time.sleep(DEFAULT_SLEEP_TIME)
|
|
logger.warning("Unable to successfully call model.")
|
|
return ""
|