mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
223 lines
8.2 KiB
Python
223 lines
8.2 KiB
Python
from __future__ import annotations
|
|
|
|
from typing import TYPE_CHECKING, List, Optional
|
|
|
|
from langchain_core.utils import get_from_env
|
|
|
|
if TYPE_CHECKING:
|
|
from elasticsearch import Elasticsearch
|
|
from elasticsearch.client import MlClient
|
|
|
|
from langchain_core.embeddings import Embeddings
|
|
|
|
|
|
class ElasticsearchEmbeddings(Embeddings):
|
|
"""Elasticsearch embedding models.
|
|
|
|
This class provides an interface to generate embeddings using a model deployed
|
|
in an Elasticsearch cluster. It requires an Elasticsearch connection object
|
|
and the model_id of the model deployed in the cluster.
|
|
|
|
In Elasticsearch you need to have an embedding model loaded and deployed.
|
|
- https://www.elastic.co/guide/en/elasticsearch/reference/current/infer-trained-model.html
|
|
- https://www.elastic.co/guide/en/machine-learning/current/ml-nlp-deploy-models.html
|
|
""" # noqa: E501
|
|
|
|
def __init__(
|
|
self,
|
|
client: MlClient,
|
|
model_id: str,
|
|
*,
|
|
input_field: str = "text_field",
|
|
):
|
|
"""
|
|
Initialize the ElasticsearchEmbeddings instance.
|
|
|
|
Args:
|
|
client (MlClient): An Elasticsearch ML client object.
|
|
model_id (str): The model_id of the model deployed in the Elasticsearch
|
|
cluster.
|
|
input_field (str): The name of the key for the input text field in the
|
|
document. Defaults to 'text_field'.
|
|
"""
|
|
self.client = client
|
|
self.model_id = model_id
|
|
self.input_field = input_field
|
|
|
|
@classmethod
|
|
def from_credentials(
|
|
cls,
|
|
model_id: str,
|
|
*,
|
|
es_cloud_id: Optional[str] = None,
|
|
es_user: Optional[str] = None,
|
|
es_password: Optional[str] = None,
|
|
input_field: str = "text_field",
|
|
) -> ElasticsearchEmbeddings:
|
|
"""Instantiate embeddings from Elasticsearch credentials.
|
|
|
|
Args:
|
|
model_id (str): The model_id of the model deployed in the Elasticsearch
|
|
cluster.
|
|
input_field (str): The name of the key for the input text field in the
|
|
document. Defaults to 'text_field'.
|
|
es_cloud_id: (str, optional): The Elasticsearch cloud ID to connect to.
|
|
es_user: (str, optional): Elasticsearch username.
|
|
es_password: (str, optional): Elasticsearch password.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.embeddings import ElasticsearchEmbeddings
|
|
|
|
# Define the model ID and input field name (if different from default)
|
|
model_id = "your_model_id"
|
|
# Optional, only if different from 'text_field'
|
|
input_field = "your_input_field"
|
|
|
|
# Credentials can be passed in two ways. Either set the env vars
|
|
# ES_CLOUD_ID, ES_USER, ES_PASSWORD and they will be automatically
|
|
# pulled in, or pass them in directly as kwargs.
|
|
embeddings = ElasticsearchEmbeddings.from_credentials(
|
|
model_id,
|
|
input_field=input_field,
|
|
# es_cloud_id="foo",
|
|
# es_user="bar",
|
|
# es_password="baz",
|
|
)
|
|
|
|
documents = [
|
|
"This is an example document.",
|
|
"Another example document to generate embeddings for.",
|
|
]
|
|
embeddings_generator.embed_documents(documents)
|
|
"""
|
|
try:
|
|
from elasticsearch import Elasticsearch
|
|
from elasticsearch.client import MlClient
|
|
except ImportError:
|
|
raise ImportError(
|
|
"elasticsearch package not found, please install with 'pip install "
|
|
"elasticsearch'"
|
|
)
|
|
|
|
es_cloud_id = es_cloud_id or get_from_env("es_cloud_id", "ES_CLOUD_ID")
|
|
es_user = es_user or get_from_env("es_user", "ES_USER")
|
|
es_password = es_password or get_from_env("es_password", "ES_PASSWORD")
|
|
|
|
# Connect to Elasticsearch
|
|
es_connection = Elasticsearch(
|
|
cloud_id=es_cloud_id, basic_auth=(es_user, es_password)
|
|
)
|
|
client = MlClient(es_connection)
|
|
return cls(client, model_id, input_field=input_field)
|
|
|
|
@classmethod
|
|
def from_es_connection(
|
|
cls,
|
|
model_id: str,
|
|
es_connection: Elasticsearch,
|
|
input_field: str = "text_field",
|
|
) -> ElasticsearchEmbeddings:
|
|
"""
|
|
Instantiate embeddings from an existing Elasticsearch connection.
|
|
|
|
This method provides a way to create an instance of the ElasticsearchEmbeddings
|
|
class using an existing Elasticsearch connection. The connection object is used
|
|
to create an MlClient, which is then used to initialize the
|
|
ElasticsearchEmbeddings instance.
|
|
|
|
Args:
|
|
model_id (str): The model_id of the model deployed in the Elasticsearch cluster.
|
|
es_connection (elasticsearch.Elasticsearch): An existing Elasticsearch
|
|
connection object. input_field (str, optional): The name of the key for the
|
|
input text field in the document. Defaults to 'text_field'.
|
|
|
|
Returns:
|
|
ElasticsearchEmbeddings: An instance of the ElasticsearchEmbeddings class.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from elasticsearch import Elasticsearch
|
|
|
|
from langchain_community.embeddings import ElasticsearchEmbeddings
|
|
|
|
# Define the model ID and input field name (if different from default)
|
|
model_id = "your_model_id"
|
|
# Optional, only if different from 'text_field'
|
|
input_field = "your_input_field"
|
|
|
|
# Create Elasticsearch connection
|
|
es_connection = Elasticsearch(
|
|
hosts=["localhost:9200"], http_auth=("user", "password")
|
|
)
|
|
|
|
# Instantiate ElasticsearchEmbeddings using the existing connection
|
|
embeddings = ElasticsearchEmbeddings.from_es_connection(
|
|
model_id,
|
|
es_connection,
|
|
input_field=input_field,
|
|
)
|
|
|
|
documents = [
|
|
"This is an example document.",
|
|
"Another example document to generate embeddings for.",
|
|
]
|
|
embeddings_generator.embed_documents(documents)
|
|
"""
|
|
# Importing MlClient from elasticsearch.client within the method to
|
|
# avoid unnecessary import if the method is not used
|
|
from elasticsearch.client import MlClient
|
|
|
|
# Create an MlClient from the given Elasticsearch connection
|
|
client = MlClient(es_connection)
|
|
|
|
# Return a new instance of the ElasticsearchEmbeddings class with
|
|
# the MlClient, model_id, and input_field
|
|
return cls(client, model_id, input_field=input_field)
|
|
|
|
def _embedding_func(self, texts: List[str]) -> List[List[float]]:
|
|
"""
|
|
Generate embeddings for the given texts using the Elasticsearch model.
|
|
|
|
Args:
|
|
texts (List[str]): A list of text strings to generate embeddings for.
|
|
|
|
Returns:
|
|
List[List[float]]: A list of embeddings, one for each text in the input
|
|
list.
|
|
"""
|
|
response = self.client.infer_trained_model(
|
|
model_id=self.model_id, docs=[{self.input_field: text} for text in texts]
|
|
)
|
|
|
|
embeddings = [doc["predicted_value"] for doc in response["inference_results"]]
|
|
return embeddings
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""
|
|
Generate embeddings for a list of documents.
|
|
|
|
Args:
|
|
texts (List[str]): A list of document text strings to generate embeddings
|
|
for.
|
|
|
|
Returns:
|
|
List[List[float]]: A list of embeddings, one for each document in the input
|
|
list.
|
|
"""
|
|
return self._embedding_func(texts)
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
"""
|
|
Generate an embedding for a single query text.
|
|
|
|
Args:
|
|
text (str): The query text to generate an embedding for.
|
|
|
|
Returns:
|
|
List[float]: The embedding for the input query text.
|
|
"""
|
|
return self._embedding_func([text])[0]
|