mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
7773943a51
- **Description:** - support custom kwargs in object initialization. For instantance, QPS differs from multiple object(chat/completion/embedding with diverse models), for which global env is not a good choice for configuration. - **Issue:** no - **Dependencies:** no - **Twitter handle:** no @baskaryan PTAL
152 lines
5.1 KiB
Python
152 lines
5.1 KiB
Python
from __future__ import annotations
|
|
|
|
import logging
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.pydantic_v1 import BaseModel, Field, root_validator
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class QianfanEmbeddingsEndpoint(BaseModel, Embeddings):
|
|
"""`Baidu Qianfan Embeddings` embedding models."""
|
|
|
|
qianfan_ak: Optional[str] = None
|
|
"""Qianfan application apikey"""
|
|
|
|
qianfan_sk: Optional[str] = None
|
|
"""Qianfan application secretkey"""
|
|
|
|
chunk_size: int = 16
|
|
"""Chunk size when multiple texts are input"""
|
|
|
|
model: str = "Embedding-V1"
|
|
"""Model name
|
|
you could get from https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu
|
|
|
|
for now, we support Embedding-V1 and
|
|
- Embedding-V1 (默认模型)
|
|
- bge-large-en
|
|
- bge-large-zh
|
|
|
|
preset models are mapping to an endpoint.
|
|
`model` will be ignored if `endpoint` is set
|
|
"""
|
|
|
|
endpoint: str = ""
|
|
"""Endpoint of the Qianfan Embedding, required if custom model used."""
|
|
|
|
client: Any
|
|
"""Qianfan client"""
|
|
|
|
init_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
"""init kwargs for qianfan client init, such as `query_per_second` which is
|
|
associated with qianfan resource object to limit QPS"""
|
|
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
"""extra params for model invoke using with `do`."""
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""
|
|
Validate whether qianfan_ak and qianfan_sk in the environment variables or
|
|
configuration file are available or not.
|
|
|
|
init qianfan embedding client with `ak`, `sk`, `model`, `endpoint`
|
|
|
|
Args:
|
|
|
|
values: a dictionary containing configuration information, must include the
|
|
fields of qianfan_ak and qianfan_sk
|
|
Returns:
|
|
|
|
a dictionary containing configuration information. If qianfan_ak and
|
|
qianfan_sk are not provided in the environment variables or configuration
|
|
file,the original values will be returned; otherwise, values containing
|
|
qianfan_ak and qianfan_sk will be returned.
|
|
Raises:
|
|
|
|
ValueError: qianfan package not found, please install it with `pip install
|
|
qianfan`
|
|
"""
|
|
values["qianfan_ak"] = convert_to_secret_str(
|
|
get_from_dict_or_env(
|
|
values,
|
|
"qianfan_ak",
|
|
"QIANFAN_AK",
|
|
default="",
|
|
)
|
|
)
|
|
values["qianfan_sk"] = convert_to_secret_str(
|
|
get_from_dict_or_env(
|
|
values,
|
|
"qianfan_sk",
|
|
"QIANFAN_SK",
|
|
default="",
|
|
)
|
|
)
|
|
|
|
try:
|
|
import qianfan
|
|
|
|
params = {
|
|
**values.get("init_kwargs", {}),
|
|
"model": values["model"],
|
|
}
|
|
if values["qianfan_ak"].get_secret_value() != "":
|
|
params["ak"] = values["qianfan_ak"].get_secret_value()
|
|
if values["qianfan_sk"].get_secret_value() != "":
|
|
params["sk"] = values["qianfan_sk"].get_secret_value()
|
|
if values["endpoint"] is not None and values["endpoint"] != "":
|
|
params["endpoint"] = values["endpoint"]
|
|
values["client"] = qianfan.Embedding(**params)
|
|
except ImportError:
|
|
raise ImportError(
|
|
"qianfan package not found, please install it with "
|
|
"`pip install qianfan`"
|
|
)
|
|
return values
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
resp = self.embed_documents([text])
|
|
return resp[0]
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""
|
|
Embeds a list of text documents using the AutoVOT algorithm.
|
|
|
|
Args:
|
|
texts (List[str]): A list of text documents to embed.
|
|
|
|
Returns:
|
|
List[List[float]]: A list of embeddings for each document in the input list.
|
|
Each embedding is represented as a list of float values.
|
|
"""
|
|
text_in_chunks = [
|
|
texts[i : i + self.chunk_size]
|
|
for i in range(0, len(texts), self.chunk_size)
|
|
]
|
|
lst = []
|
|
for chunk in text_in_chunks:
|
|
resp = self.client.do(texts=chunk, **self.model_kwargs)
|
|
lst.extend([res["embedding"] for res in resp["data"]])
|
|
return lst
|
|
|
|
async def aembed_query(self, text: str) -> List[float]:
|
|
embeddings = await self.aembed_documents([text])
|
|
return embeddings[0]
|
|
|
|
async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
text_in_chunks = [
|
|
texts[i : i + self.chunk_size]
|
|
for i in range(0, len(texts), self.chunk_size)
|
|
]
|
|
lst = []
|
|
for chunk in text_in_chunks:
|
|
resp = await self.client.ado(texts=chunk, **self.model_kwargs)
|
|
for res in resp["data"]:
|
|
lst.extend([res["embedding"]])
|
|
return lst
|