mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
2667ddc686
**Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
224 lines
5.5 KiB
Plaintext
224 lines
5.5 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"id": "9597802c",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Clarifai\n",
|
|
"\n",
|
|
">[Clarifai](https://www.clarifai.com/) is an AI Platform that provides the full AI lifecycle ranging from data exploration, data labeling, model training, evaluation, and inference.\n",
|
|
"\n",
|
|
"This example goes over how to use LangChain to interact with `Clarifai` [models](https://clarifai.com/explore/models). \n",
|
|
"\n",
|
|
"To use Clarifai, you must have an account and a Personal Access Token (PAT) key. \n",
|
|
"[Check here](https://clarifai.com/settings/security) to get or create a PAT."
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"id": "2a773d8d",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Dependencies"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "91ea14ce-831d-409a-a88f-30353acdabd1",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Install required dependencies\n",
|
|
"!pip install clarifai"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"id": "426f1156",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Imports\n",
|
|
"Here we will be setting the personal access token. You can find your PAT under [settings/security](https://clarifai.com/settings/security) in your Clarifai account."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "3f5dc9d7-65e3-4b5b-9086-3327d016cfe0",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdin",
|
|
"output_type": "stream",
|
|
"text": [
|
|
" ········\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# Please login and get your API key from https://clarifai.com/settings/security\n",
|
|
"from getpass import getpass\n",
|
|
"\n",
|
|
"CLARIFAI_PAT = getpass()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "6fb585dd",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Import the required modules\n",
|
|
"from langchain.llms import Clarifai\n",
|
|
"from langchain import PromptTemplate, LLMChain"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"id": "16521ed2",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Input\n",
|
|
"Create a prompt template to be used with the LLM Chain:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "035dea0f",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"template = \"\"\"Question: {question}\n",
|
|
"\n",
|
|
"Answer: Let's think step by step.\"\"\"\n",
|
|
"\n",
|
|
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"id": "c8905eac",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Setup\n",
|
|
"Setup the user id and app id where the model resides. You can find a list of public models on https://clarifai.com/explore/models\n",
|
|
"\n",
|
|
"You will have to also initialize the model id and if needed, the model version id. Some models have many versions, you can choose the one appropriate for your task."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "1fe9bf15",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"USER_ID = \"openai\"\n",
|
|
"APP_ID = \"chat-completion\"\n",
|
|
"MODEL_ID = \"GPT-3_5-turbo\"\n",
|
|
"\n",
|
|
"# You can provide a specific model version as the model_version_id arg.\n",
|
|
"# MODEL_VERSION_ID = \"MODEL_VERSION_ID\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "3f3458d9",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Initialize a Clarifai LLM\n",
|
|
"clarifai_llm = Clarifai(\n",
|
|
" pat=CLARIFAI_PAT, user_id=USER_ID, app_id=APP_ID, model_id=MODEL_ID\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "a641dbd9",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Create LLM chain\n",
|
|
"llm_chain = LLMChain(prompt=prompt, llm=clarifai_llm)"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"id": "3e87c71a",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Run Chain"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "9f844993",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"'Justin Bieber was born on March 1, 1994. So, we need to figure out the Super Bowl winner for the 1994 season. The NFL season spans two calendar years, so the Super Bowl for the 1994 season would have taken place in early 1995. \\n\\nThe Super Bowl in question is Super Bowl XXIX, which was played on January 29, 1995. The game was won by the San Francisco 49ers, who defeated the San Diego Chargers by a score of 49-26. Therefore, the San Francisco 49ers won the Super Bowl in the year Justin Bieber was born.'"
|
|
]
|
|
},
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n",
|
|
"\n",
|
|
"llm_chain.run(question)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.16"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|