langchain/libs/community/langchain_community/utilities/google_scholar.py
Erick Friis c2a3021bb0
multiple: pydantic 2 compatibility, v0.3 (#26443)
Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Dan O'Donovan <dan.odonovan@gmail.com>
Co-authored-by: Tom Daniel Grande <tomdgrande@gmail.com>
Co-authored-by: Grande <Tom.Daniel.Grande@statsbygg.no>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com>
Co-authored-by: ZhangShenao <15201440436@163.com>
Co-authored-by: Friso H. Kingma <fhkingma@gmail.com>
Co-authored-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Nuno Campos <nuno@langchain.dev>
Co-authored-by: Morgante Pell <morgantep@google.com>
2024-09-13 14:38:45 -07:00

131 lines
5.0 KiB
Python

"""Util that calls Google Scholar Search."""
from typing import Any, Dict, Optional
from langchain_core.utils import get_from_dict_or_env
from pydantic import BaseModel, ConfigDict, model_validator
class GoogleScholarAPIWrapper(BaseModel):
"""Wrapper for Google Scholar API
You can create serpapi key by signing up at: https://serpapi.com/users/sign_up.
The wrapper uses the serpapi python package:
https://serpapi.com/integrations/python#search-google-scholar
To use, you should have the environment variable ``SERP_API_KEY``
set with your API key, or pass `serp_api_key` as a named parameter
to the constructor.
Attributes:
top_k_results: number of results to return from google-scholar query search.
By default it returns top 10 results.
hl: attribute defines the language to use for the Google Scholar search.
It's a two-letter language code.
(e.g., en for English, es for Spanish, or fr for French). Head to the
Google languages page for a full list of supported Google languages:
https://serpapi.com/google-languages
lr: attribute defines one or multiple languages to limit the search to.
It uses lang_{two-letter language code} to specify languages
and | as a delimiter. (e.g., lang_fr|lang_de will only search French
and German pages). Head to the Google lr languages for a full
list of supported languages: https://serpapi.com/google-lr-languages
Example:
.. code-block:: python
from langchain_community.utilities import GoogleScholarAPIWrapper
google_scholar = GoogleScholarAPIWrapper()
google_scholar.run('langchain')
"""
top_k_results: int = 10
hl: str = "en"
lr: str = "lang_en"
serp_api_key: Optional[str] = None
model_config = ConfigDict(
extra="forbid",
)
@model_validator(mode="before")
@classmethod
def validate_environment(cls, values: Dict) -> Any:
"""Validate that api key and python package exists in environment."""
serp_api_key = get_from_dict_or_env(values, "serp_api_key", "SERP_API_KEY")
values["SERP_API_KEY"] = serp_api_key
try:
from serpapi import GoogleScholarSearch
except ImportError:
raise ImportError(
"google-search-results is not installed. "
"Please install it with `pip install google-search-results"
">=2.4.2`"
)
GoogleScholarSearch.SERP_API_KEY = serp_api_key
values["google_scholar_engine"] = GoogleScholarSearch
return values
def run(self, query: str) -> str:
"""Run query through GoogleSearchScholar and parse result"""
total_results = []
page = 0
while page < max((self.top_k_results - 20), 1):
# We are getting 20 results from every page
# which is the max in order to reduce the number of API CALLS.
# 0 is the first page of results, 20 is the 2nd page of results,
# 40 is the 3rd page of results, etc.
results = (
self.google_scholar_engine( # type: ignore
{
"q": query,
"start": page,
"hl": self.hl,
"num": min(
self.top_k_results, 20
), # if top_k_result is less than 20.
"lr": self.lr,
}
)
.get_dict()
.get("organic_results", [])
)
total_results.extend(results)
if not results: # No need to search for more pages if current page
# has returned no results
break
page += 20
if (
self.top_k_results % 20 != 0 and page > 20 and total_results
): # From the last page we would only need top_k_results%20 results
# if k is not divisible by 20.
results = (
self.google_scholar_engine( # type: ignore
{
"q": query,
"start": page,
"num": self.top_k_results % 20,
"hl": self.hl,
"lr": self.lr,
}
)
.get_dict()
.get("organic_results", [])
)
total_results.extend(results)
if not total_results:
return "No good Google Scholar Result was found"
docs = [
f"Title: {result.get('title','')}\n"
f"Authors: {','.join([author.get('name') for author in result.get('publication_info',{}).get('authors',[])])}\n" # noqa: E501
f"Summary: {result.get('publication_info',{}).get('summary','')}\n"
f"Total-Citations: {result.get('inline_links',{}).get('cited_by',{}).get('total','')}" # noqa: E501
for result in total_results
]
return "\n\n".join(docs)