mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
c2a3021bb0
Signed-off-by: ChengZi <chen.zhang@zilliz.com> Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com> Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com> Co-authored-by: Dan O'Donovan <dan.odonovan@gmail.com> Co-authored-by: Tom Daniel Grande <tomdgrande@gmail.com> Co-authored-by: Grande <Tom.Daniel.Grande@statsbygg.no> Co-authored-by: Bagatur <baskaryan@gmail.com> Co-authored-by: ccurme <chester.curme@gmail.com> Co-authored-by: Harrison Chase <hw.chase.17@gmail.com> Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com> Co-authored-by: ZhangShenao <15201440436@163.com> Co-authored-by: Friso H. Kingma <fhkingma@gmail.com> Co-authored-by: ChengZi <chen.zhang@zilliz.com> Co-authored-by: Nuno Campos <nuno@langchain.dev> Co-authored-by: Morgante Pell <morgantep@google.com>
238 lines
7.6 KiB
Python
238 lines
7.6 KiB
Python
"""Tool for the Tavily search API."""
|
|
|
|
from typing import Dict, List, Literal, Optional, Tuple, Type, Union
|
|
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForToolRun,
|
|
CallbackManagerForToolRun,
|
|
)
|
|
from langchain_core.tools import BaseTool
|
|
from pydantic import BaseModel, Field
|
|
|
|
from langchain_community.utilities.tavily_search import TavilySearchAPIWrapper
|
|
|
|
|
|
class TavilyInput(BaseModel):
|
|
"""Input for the Tavily tool."""
|
|
|
|
query: str = Field(description="search query to look up")
|
|
|
|
|
|
class TavilySearchResults(BaseTool):
|
|
"""Tool that queries the Tavily Search API and gets back json.
|
|
|
|
Setup:
|
|
Install ``langchain-openai`` and ``tavily-python``, and set environment variable ``TAVILY_API_KEY``.
|
|
|
|
.. code-block:: bash
|
|
|
|
pip install -U langchain-community tavily-python
|
|
export TAVILY_API_KEY="your-api-key"
|
|
|
|
Instantiate:
|
|
|
|
.. code-block:: python
|
|
|
|
from langchain_community.tools import TavilySearchResults
|
|
|
|
tool = TavilySearchResults(
|
|
max_results=5,
|
|
include_answer=True,
|
|
include_raw_content=True,
|
|
include_images=True,
|
|
# search_depth="advanced",
|
|
# include_domains = []
|
|
# exclude_domains = []
|
|
)
|
|
|
|
Invoke directly with args:
|
|
|
|
.. code-block:: python
|
|
|
|
tool.invoke({'query': 'who won the last french open'})
|
|
|
|
.. code-block:: python
|
|
|
|
'{\n "url": "https://www.nytimes.com...", "content": "Novak Djokovic won the last French Open by beating Casper Ruud ...'
|
|
|
|
Invoke with tool call:
|
|
|
|
.. code-block:: python
|
|
|
|
tool.invoke({"args": {'query': 'who won the last french open'}, "type": "tool_call", "id": "foo", "name": "tavily"})
|
|
|
|
.. code-block:: python
|
|
|
|
ToolMessage(
|
|
content='{\n "url": "https://www.nytimes.com...", "content": "Novak Djokovic won the last French Open by beating Casper Ruud ...',
|
|
artifact={
|
|
'query': 'who won the last french open',
|
|
'follow_up_questions': None,
|
|
'answer': 'Novak ...',
|
|
'images': [
|
|
'https://www.amny.com/wp-content/uploads/2023/06/AP23162622181176-1200x800.jpg',
|
|
...
|
|
],
|
|
'results': [
|
|
{
|
|
'title': 'Djokovic ...',
|
|
'url': 'https://www.nytimes.com...',
|
|
'content': "Novak...",
|
|
'score': 0.99505633,
|
|
'raw_content': 'Tennis\nNovak ...'
|
|
},
|
|
...
|
|
],
|
|
'response_time': 2.92
|
|
},
|
|
tool_call_id='1',
|
|
name='tavily_search_results_json',
|
|
)
|
|
|
|
""" # noqa: E501
|
|
|
|
name: str = "tavily_search_results_json"
|
|
description: str = (
|
|
"A search engine optimized for comprehensive, accurate, and trusted results. "
|
|
"Useful for when you need to answer questions about current events. "
|
|
"Input should be a search query."
|
|
)
|
|
args_schema: Type[BaseModel] = TavilyInput
|
|
"""The tool response format."""
|
|
|
|
max_results: int = 5
|
|
"""Max search results to return, default is 5"""
|
|
search_depth: str = "advanced"
|
|
"""The depth of the search. It can be "basic" or "advanced"
|
|
|
|
.. versionadded:: 0.2.5
|
|
"""
|
|
include_domains: List[str] = []
|
|
"""A list of domains to specifically include in the search results.
|
|
|
|
Default is None, which includes all domains.
|
|
|
|
.. versionadded:: 0.2.5
|
|
"""
|
|
exclude_domains: List[str] = []
|
|
"""A list of domains to specifically exclude from the search results.
|
|
|
|
Default is None, which doesn't exclude any domains.
|
|
|
|
.. versionadded:: 0.2.5
|
|
"""
|
|
include_answer: bool = False
|
|
"""Include a short answer to original query in the search results.
|
|
|
|
Default is False.
|
|
|
|
.. versionadded:: 0.2.5
|
|
"""
|
|
include_raw_content: bool = False
|
|
"""Include cleaned and parsed HTML of each site search results.
|
|
|
|
Default is False.
|
|
|
|
.. versionadded:: 0.2.5
|
|
"""
|
|
include_images: bool = False
|
|
"""Include a list of query related images in the response.
|
|
|
|
Default is False.
|
|
|
|
.. versionadded:: 0.2.5
|
|
"""
|
|
|
|
api_wrapper: TavilySearchAPIWrapper = Field(default_factory=TavilySearchAPIWrapper) # type: ignore[arg-type]
|
|
response_format: Literal["content_and_artifact"] = "content_and_artifact"
|
|
|
|
def _run(
|
|
self,
|
|
query: str,
|
|
run_manager: Optional[CallbackManagerForToolRun] = None,
|
|
) -> Tuple[Union[List[Dict[str, str]], str], Dict]:
|
|
"""Use the tool."""
|
|
# TODO: remove try/except, should be handled by BaseTool
|
|
try:
|
|
raw_results = self.api_wrapper.raw_results(
|
|
query,
|
|
self.max_results,
|
|
self.search_depth,
|
|
self.include_domains,
|
|
self.exclude_domains,
|
|
self.include_answer,
|
|
self.include_raw_content,
|
|
self.include_images,
|
|
)
|
|
except Exception as e:
|
|
return repr(e), {}
|
|
return self.api_wrapper.clean_results(raw_results["results"]), raw_results
|
|
|
|
async def _arun(
|
|
self,
|
|
query: str,
|
|
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
|
|
) -> Tuple[Union[List[Dict[str, str]], str], Dict]:
|
|
"""Use the tool asynchronously."""
|
|
try:
|
|
raw_results = await self.api_wrapper.raw_results_async(
|
|
query,
|
|
self.max_results,
|
|
self.search_depth,
|
|
self.include_domains,
|
|
self.exclude_domains,
|
|
self.include_answer,
|
|
self.include_raw_content,
|
|
self.include_images,
|
|
)
|
|
except Exception as e:
|
|
return repr(e), {}
|
|
return self.api_wrapper.clean_results(raw_results["results"]), raw_results
|
|
|
|
|
|
class TavilyAnswer(BaseTool):
|
|
"""Tool that queries the Tavily Search API and gets back an answer."""
|
|
|
|
name: str = "tavily_answer"
|
|
description: str = (
|
|
"A search engine optimized for comprehensive, accurate, and trusted results. "
|
|
"Useful for when you need to answer questions about current events. "
|
|
"Input should be a search query. "
|
|
"This returns only the answer - not the original source data."
|
|
)
|
|
api_wrapper: TavilySearchAPIWrapper = Field(default_factory=TavilySearchAPIWrapper) # type: ignore[arg-type]
|
|
args_schema: Type[BaseModel] = TavilyInput
|
|
|
|
def _run(
|
|
self,
|
|
query: str,
|
|
run_manager: Optional[CallbackManagerForToolRun] = None,
|
|
) -> Union[List[Dict], str]:
|
|
"""Use the tool."""
|
|
try:
|
|
return self.api_wrapper.raw_results(
|
|
query,
|
|
max_results=5,
|
|
include_answer=True,
|
|
search_depth="basic",
|
|
)["answer"]
|
|
except Exception as e:
|
|
return repr(e)
|
|
|
|
async def _arun(
|
|
self,
|
|
query: str,
|
|
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
|
|
) -> Union[List[Dict], str]:
|
|
"""Use the tool asynchronously."""
|
|
try:
|
|
result = await self.api_wrapper.raw_results_async(
|
|
query,
|
|
max_results=5,
|
|
include_answer=True,
|
|
search_depth="basic",
|
|
)
|
|
return result["answer"]
|
|
except Exception as e:
|
|
return repr(e)
|