mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
a0c2281540
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
66 lines
1.9 KiB
Python
66 lines
1.9 KiB
Python
"""Logic for converting internal query language to a valid DashVector query."""
|
|
|
|
from typing import Tuple, Union
|
|
|
|
from langchain_core.structured_query import (
|
|
Comparator,
|
|
Comparison,
|
|
Operation,
|
|
Operator,
|
|
StructuredQuery,
|
|
Visitor,
|
|
)
|
|
|
|
|
|
class DashvectorTranslator(Visitor):
|
|
"""Logic for converting internal query language elements to valid filters."""
|
|
|
|
allowed_operators = [Operator.AND, Operator.OR]
|
|
allowed_comparators = [
|
|
Comparator.EQ,
|
|
Comparator.GT,
|
|
Comparator.GTE,
|
|
Comparator.LT,
|
|
Comparator.LTE,
|
|
Comparator.LIKE,
|
|
]
|
|
|
|
map_dict = {
|
|
Operator.AND: " AND ",
|
|
Operator.OR: " OR ",
|
|
Comparator.EQ: " = ",
|
|
Comparator.GT: " > ",
|
|
Comparator.GTE: " >= ",
|
|
Comparator.LT: " < ",
|
|
Comparator.LTE: " <= ",
|
|
Comparator.LIKE: " LIKE ",
|
|
}
|
|
|
|
def _format_func(self, func: Union[Operator, Comparator]) -> str:
|
|
self._validate_func(func)
|
|
return self.map_dict[func]
|
|
|
|
def visit_operation(self, operation: Operation) -> str:
|
|
args = [arg.accept(self) for arg in operation.arguments]
|
|
return self._format_func(operation.operator).join(args)
|
|
|
|
def visit_comparison(self, comparison: Comparison) -> str:
|
|
value = comparison.value
|
|
if isinstance(value, str):
|
|
if comparison.comparator == Comparator.LIKE:
|
|
value = f"'%{value}%'"
|
|
else:
|
|
value = f"'{value}'"
|
|
return (
|
|
f"{comparison.attribute}{self._format_func(comparison.comparator)}{value}"
|
|
)
|
|
|
|
def visit_structured_query(
|
|
self, structured_query: StructuredQuery
|
|
) -> Tuple[str, dict]:
|
|
if structured_query.filter is None:
|
|
kwargs = {}
|
|
else:
|
|
kwargs = {"filter": structured_query.filter.accept(self)}
|
|
return structured_query.query, kwargs
|