langchain/templates/rag-pinecone-rerank/rag_pinecone_rerank/chain.py
Samuel Path 138f97af23
Add missing comment char "#" before Load in chain.py for the rag-pinecone-rerank template (#15209)
Without this additional `#`, one needs to add it manually after
uncommenting the section.
2024-01-01 14:01:06 -08:00

74 lines
2.2 KiB
Python

import os
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import OpenAIEmbeddings
from langchain.prompts import ChatPromptTemplate
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import CohereRerank
from langchain.vectorstores import Pinecone
from langchain_core.output_parsers import StrOutputParser
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
if os.environ.get("PINECONE_API_KEY", None) is None:
raise Exception("Missing `PINECONE_API_KEY` environment variable.")
if os.environ.get("PINECONE_ENVIRONMENT", None) is None:
raise Exception("Missing `PINECONE_ENVIRONMENT` environment variable.")
PINECONE_INDEX_NAME = os.environ.get("PINECONE_INDEX", "langchain-test")
### Ingest code - you may need to run this the first time
# # Load
# from langchain.document_loaders import WebBaseLoader
# loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")
# data = loader.load()
# # Split
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
# all_splits = text_splitter.split_documents(data)
# # Add to vectorDB
# vectorstore = Pinecone.from_documents(
# documents=all_splits, embedding=OpenAIEmbeddings(), index_name=PINECONE_INDEX_NAME
# )
# retriever = vectorstore.as_retriever()
vectorstore = Pinecone.from_existing_index(PINECONE_INDEX_NAME, OpenAIEmbeddings())
# Get k=10 docs
retriever = vectorstore.as_retriever(search_kwargs={"k": 10})
# Re-rank
compressor = CohereRerank()
compression_retriever = ContextualCompressionRetriever(
base_compressor=compressor, base_retriever=retriever
)
# RAG prompt
template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
# RAG
model = ChatOpenAI()
chain = (
RunnableParallel(
{"context": compression_retriever, "question": RunnablePassthrough()}
)
| prompt
| model
| StrOutputParser()
)
# Add typing for input
class Question(BaseModel):
__root__: str
chain = chain.with_types(input_type=Question)