mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
e57ebf3922
# Row-wise cosine similarity between two equal-width matrices and return the max top_k score and index, the score all greater than threshold_score. Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
79 lines
2.5 KiB
Python
79 lines
2.5 KiB
Python
"""Test math utility functions."""
|
|
from typing import List
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from langchain.math_utils import cosine_similarity, cosine_similarity_top_k
|
|
|
|
|
|
@pytest.fixture
|
|
def X() -> List[List[float]]:
|
|
return [[1.0, 2.0, 3.0], [0.0, 1.0, 0.0], [1.0, 2.0, 0.0]]
|
|
|
|
|
|
@pytest.fixture
|
|
def Y() -> List[List[float]]:
|
|
return [[0.5, 1.0, 1.5], [1.0, 0.0, 0.0], [2.0, 5.0, 2.0], [0.0, 0.0, 0.0]]
|
|
|
|
|
|
def test_cosine_similarity_zero() -> None:
|
|
X = np.zeros((3, 3))
|
|
Y = np.random.random((3, 3))
|
|
expected = np.zeros((3, 3))
|
|
actual = cosine_similarity(X, Y)
|
|
assert np.allclose(expected, actual)
|
|
|
|
|
|
def test_cosine_similarity_identity() -> None:
|
|
X = np.random.random((4, 4))
|
|
expected = np.ones(4)
|
|
actual = np.diag(cosine_similarity(X, X))
|
|
assert np.allclose(expected, actual)
|
|
|
|
|
|
def test_cosine_similarity_empty() -> None:
|
|
empty_list: List[List[float]] = []
|
|
assert len(cosine_similarity(empty_list, empty_list)) == 0
|
|
assert len(cosine_similarity(empty_list, np.random.random((3, 3)))) == 0
|
|
|
|
|
|
def test_cosine_similarity(X: List[List[float]], Y: List[List[float]]) -> None:
|
|
expected = [
|
|
[1.0, 0.26726124, 0.83743579, 0.0],
|
|
[0.53452248, 0.0, 0.87038828, 0.0],
|
|
[0.5976143, 0.4472136, 0.93419873, 0.0],
|
|
]
|
|
actual = cosine_similarity(X, Y)
|
|
assert np.allclose(expected, actual)
|
|
|
|
|
|
def test_cosine_similarity_top_k(X: List[List[float]], Y: List[List[float]]) -> None:
|
|
expected_idxs = [(0, 0), (2, 2), (1, 2), (0, 2), (2, 0)]
|
|
expected_scores = [1.0, 0.93419873, 0.87038828, 0.83743579, 0.5976143]
|
|
actual_idxs, actual_scores = cosine_similarity_top_k(X, Y)
|
|
assert actual_idxs == expected_idxs
|
|
assert np.allclose(expected_scores, actual_scores)
|
|
|
|
|
|
def test_cosine_similarity_score_threshold(
|
|
X: List[List[float]], Y: List[List[float]]
|
|
) -> None:
|
|
expected_idxs = [(0, 0), (2, 2)]
|
|
expected_scores = [1.0, 0.93419873]
|
|
actual_idxs, actual_scores = cosine_similarity_top_k(
|
|
X, Y, top_k=None, score_threshold=0.9
|
|
)
|
|
assert actual_idxs == expected_idxs
|
|
assert np.allclose(expected_scores, actual_scores)
|
|
|
|
|
|
def test_cosine_similarity_top_k_and_score_threshold(
|
|
X: List[List[float]], Y: List[List[float]]
|
|
) -> None:
|
|
expected_idxs = [(0, 0), (2, 2), (1, 2), (0, 2)]
|
|
expected_scores = [1.0, 0.93419873, 0.87038828, 0.83743579]
|
|
actual_idxs, actual_scores = cosine_similarity_top_k(X, Y, score_threshold=0.8)
|
|
assert actual_idxs == expected_idxs
|
|
assert np.allclose(expected_scores, actual_scores)
|