mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
2b2176a3c1
Co-authored-by: vempaliakhil96 <vempaliakhil96@gmail.com>
35 lines
1.2 KiB
Python
35 lines
1.2 KiB
Python
import pytest
|
|
|
|
from langchain.retrievers.tfidf import TFIDFRetriever
|
|
from langchain.schema import Document
|
|
|
|
|
|
@pytest.mark.requires("sklearn")
|
|
def test_from_texts() -> None:
|
|
input_texts = ["I have a pen.", "Do you have a pen?", "I have a bag."]
|
|
tfidf_retriever = TFIDFRetriever.from_texts(texts=input_texts)
|
|
assert len(tfidf_retriever.docs) == 3
|
|
assert tfidf_retriever.tfidf_array.toarray().shape == (3, 5)
|
|
|
|
|
|
@pytest.mark.requires("sklearn")
|
|
def test_from_texts_with_tfidf_params() -> None:
|
|
input_texts = ["I have a pen.", "Do you have a pen?", "I have a bag."]
|
|
tfidf_retriever = TFIDFRetriever.from_texts(
|
|
texts=input_texts, tfidf_params={"min_df": 2}
|
|
)
|
|
# should count only multiple words (have, pan)
|
|
assert tfidf_retriever.tfidf_array.toarray().shape == (3, 2)
|
|
|
|
|
|
@pytest.mark.requires("sklearn")
|
|
def test_from_documents() -> None:
|
|
input_docs = [
|
|
Document(page_content="I have a pen."),
|
|
Document(page_content="Do you have a pen?"),
|
|
Document(page_content="I have a bag."),
|
|
]
|
|
tfidf_retriever = TFIDFRetriever.from_documents(documents=input_docs)
|
|
assert len(tfidf_retriever.docs) == 3
|
|
assert tfidf_retriever.tfidf_array.toarray().shape == (3, 5)
|