mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
a0c2281540
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ``` |
||
---|---|---|
.. | ||
langchain_exa | ||
scripts | ||
tests | ||
.gitignore | ||
LICENSE | ||
Makefile | ||
poetry.lock | ||
pyproject.toml | ||
README.md |
langchain-exa
This package contains the LangChain integrations for Exa Cloud generative models.
Installation
pip install -U langchain-exa
Exa Search Retriever
You can retrieve search results as follows
from langchain_exa import ExaSearchRetriever
exa_api_key = "YOUR API KEY"
# Create a new instance of the ExaSearchRetriever
exa = ExaSearchRetriever(exa_api_key=exa_api_key)
# Search for a query and save the results
results = exa.invoke("What is the capital of France?")
# Print the results
print(results)
Exa Search Results
You can run the ExaSearchResults module as follows
from langchain_exa import ExaSearchResults
# Initialize the ExaSearchResults tool
search_tool = ExaSearchResults(exa_api_key="YOUR API KEY")
# Perform a search query
search_results = search_tool._run(
query="When was the last time the New York Knicks won the NBA Championship?",
num_results=5,
text_contents_options=True,
highlights=True
)
print("Search Results:", search_results)
Exa Find Similar Results
You can run the ExaFindSimilarResults module as follows
from langchain_exa import ExaFindSimilarResults
# Initialize the ExaFindSimilarResults tool
find_similar_tool = ExaFindSimilarResults(exa_api_key="YOUR API KEY")
# Find similar results based on a URL
similar_results = find_similar_tool._run(
url="http://espn.com",
num_results=5,
text_contents_options=True,
highlights=True
)
print("Similar Results:", similar_results)