mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
eb26b5535a
**Description:** : Add support for chat message history using Couchbase - [x] **Add tests and docs**: If you're adding a new integration, please include 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. It lives in `docs/docs/integrations` directory. - [x] **Lint and test**: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified. See contribution guidelines for more: https://python.langchain.com/docs/contributing/ --------- Co-authored-by: Nithish Raghunandanan <nithishr@users.noreply.github.com> |
||
---|---|---|
.. | ||
langchain_couchbase | ||
scripts | ||
tests | ||
.gitignore | ||
LICENSE | ||
Makefile | ||
poetry.lock | ||
pyproject.toml | ||
README.md |
langchain-couchbase
This package contains the LangChain integration with Couchbase
Installation
pip install -U langchain-couchbase
Usage
The CouchbaseVectorStore
class exposes the connection to the Couchbase vector store.
from langchain_couchbase.vectorstores import CouchbaseVectorStore
from couchbase.cluster import Cluster
from couchbase.auth import PasswordAuthenticator
from couchbase.options import ClusterOptions
from datetime import timedelta
auth = PasswordAuthenticator(username, password)
options = ClusterOptions(auth)
connect_string = "couchbases://localhost"
cluster = Cluster(connect_string, options)
# Wait until the cluster is ready for use.
cluster.wait_until_ready(timedelta(seconds=5))
embeddings = OpenAIEmbeddings()
vectorstore = CouchbaseVectorStore(
cluster=cluster,
bucket_name="",
scope_name="",
collection_name="",
embedding=embeddings,
index_name="vector-search-index",
)