langchain/templates/xml-agent/xml_agent/agent.py
donbr de496062b3
templates: migrate to langchain_anthropic package to support Claude 3 models (#19393)
- **Description:** update langchain anthropic templates to support
Claude 3 (iterative search, chain of note, summarization, and XML
response)
- **Issue:** issue # N/A. Stability issues and errors encountered when
trying to use older langchain and anthropic libraries.
- **Dependencies:**
  - langchain_anthropic version 0.1.4\
- anthropic package version in the range ">=0.17.0,<1" to support
langchain_anthropic.
- **Twitter handle:** @d_w_b7


- [ x]**Add tests and docs**: If you're adding a new integration, please
include
  1. used instructions in the README for testing

- [ x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-04-06 00:33:59 +00:00

54 lines
1.5 KiB
Python

from typing import List, Tuple
from langchain.agents import AgentExecutor
from langchain.agents.format_scratchpad import format_xml
from langchain.tools import DuckDuckGoSearchRun
from langchain.tools.render import render_text_description
from langchain_anthropic import ChatAnthropic
from langchain_core.messages import AIMessage, HumanMessage
from langchain_core.pydantic_v1 import BaseModel, Field
from xml_agent.prompts import conversational_prompt, parse_output
def _format_chat_history(chat_history: List[Tuple[str, str]]):
buffer = []
for human, ai in chat_history:
buffer.append(HumanMessage(content=human))
buffer.append(AIMessage(content=ai))
return buffer
model = ChatAnthropic(model="claude-3-sonnet-20240229")
tools = [DuckDuckGoSearchRun()]
prompt = conversational_prompt.partial(
tools=render_text_description(tools),
tool_names=", ".join([t.name for t in tools]),
)
llm_with_stop = model.bind(stop=["</tool_input>"])
agent = (
{
"question": lambda x: x["question"],
"agent_scratchpad": lambda x: format_xml(x["intermediate_steps"]),
"chat_history": lambda x: _format_chat_history(x["chat_history"]),
}
| prompt
| llm_with_stop
| parse_output
)
class AgentInput(BaseModel):
question: str
chat_history: List[Tuple[str, str]] = Field(..., extra={"widget": {"type": "chat"}})
agent_executor = AgentExecutor(
agent=agent, tools=tools, verbose=True, handle_parsing_errors=True
).with_types(input_type=AgentInput)
agent_executor = agent_executor | (lambda x: x["output"])