langchain/docs/extras/integrations/chat_loaders/facebook.ipynb
2023-08-27 17:18:09 -07:00

580 lines
17 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "e4bd269b",
"metadata": {},
"source": [
"# Facebook Messenger\n",
"\n",
"This notebook shows how to load data from Facebook in a format you can finetune on. The overall steps are:\n",
"\n",
"1. Download your messenger data to disk.\n",
"2. Create the Chat Loader and call `loader.load()` (or `loader.lazy_load()`) to perform the conversion.\n",
"3. Optionally use `merge_chat_runs` to combine message from the same sender in sequence, and/or `map_ai_messages` to convert messages from the specified sender to the \"AIMessage\" class. Once you've done this, call `convert_messages_for_finetuning` to prepare your data for fine-tuning.\n",
"\n",
"\n",
"Once this has been done, you can fine-tune your model. To do so you would complete the following steps:\n",
"\n",
"4. Upload your messages to OpenAI and run a fine-tuning job.\n",
"6. Use the resulting model in your LangChain app!\n",
"\n",
"\n",
"Let's begin.\n",
"\n",
"\n",
"## 1. Download Data\n",
"\n",
"To download your own messenger data, following instructions [here](https://www.zapptales.com/en/download-facebook-messenger-chat-history-how-to/). IMPORTANT - make sure to download them in JSON format (not HTML).\n",
"\n",
"We are hosting an example dump at [this google drive link](https://drive.google.com/file/d/1rh1s1o2i7B-Sk1v9o8KNgivLVGwJ-osV/view?usp=sharing) that we will use in this walkthrough."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "647f2158-a42e-4634-b283-b8492caf542a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"File file.zip downloaded.\n",
"File file.zip has been unzipped.\n"
]
}
],
"source": [
"# This uses some example data\n",
"import requests\n",
"import zipfile\n",
"\n",
"def download_and_unzip(url: str, output_path: str = 'file.zip') -> None:\n",
" file_id = url.split('/')[-2]\n",
" download_url = f'https://drive.google.com/uc?export=download&id={file_id}'\n",
"\n",
" response = requests.get(download_url)\n",
" if response.status_code != 200:\n",
" print('Failed to download the file.')\n",
" return\n",
"\n",
" with open(output_path, 'wb') as file:\n",
" file.write(response.content)\n",
" print(f'File {output_path} downloaded.')\n",
"\n",
" with zipfile.ZipFile(output_path, 'r') as zip_ref:\n",
" zip_ref.extractall()\n",
" print(f'File {output_path} has been unzipped.')\n",
"\n",
"# URL of the file to download\n",
"url = 'https://drive.google.com/file/d/1rh1s1o2i7B-Sk1v9o8KNgivLVGwJ-osV/view?usp=sharing'\n",
"\n",
"# Download and unzip\n",
"download_and_unzip(url)\n"
]
},
{
"cell_type": "markdown",
"id": "48ef8bb1-fc28-453c-835a-94a552f05a91",
"metadata": {},
"source": [
"## 2. Create Chat Loader\n",
"\n",
"We have 2 different `FacebookMessengerChatLoader` classes, one for an entire directory of chats, and one to load individual files. We"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "a0869bc6",
"metadata": {},
"outputs": [],
"source": [
"directory_path = \"./hogwarts\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "0460bf25",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_loaders.facebook_messenger import (\n",
" SingleFileFacebookMessengerChatLoader,\n",
" FolderFacebookMessengerChatLoader,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "f61ee277",
"metadata": {},
"outputs": [],
"source": [
"loader = SingleFileFacebookMessengerChatLoader(\n",
" path=\"./hogwarts/inbox/HermioneGranger/messages_Hermione_Granger.json\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "ec466ad7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[HumanMessage(content=\"Hi Hermione! How's your summer going so far?\", additional_kwargs={'sender': 'Harry Potter'}, example=False),\n",
" HumanMessage(content=\"Harry! Lovely to hear from you. My summer is going well, though I do miss everyone. I'm spending most of my time going through my books and researching fascinating new topics. How about you?\", additional_kwargs={'sender': 'Hermione Granger'}, example=False),\n",
" HumanMessage(content=\"I miss you all too. The Dursleys are being their usual unpleasant selves but I'm getting by. At least I can practice some spells in my room without them knowing. Let me know if you find anything good in your researching!\", additional_kwargs={'sender': 'Harry Potter'}, example=False)]"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat_session = loader.load()[0]\n",
"chat_session[\"messages\"][:3]"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "8a3ee473",
"metadata": {},
"outputs": [],
"source": [
"loader = FolderFacebookMessengerChatLoader(\n",
" path=\"./hogwarts\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "9f41e122",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"9"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat_sessions = loader.load()\n",
"len(chat_sessions)"
]
},
{
"cell_type": "markdown",
"id": "d4aa3580-adc1-4b48-9bba-0e8e8d9f44ce",
"metadata": {},
"source": [
"## 3. Prepare for fine-tuning\n",
"\n",
"Calling `load()` returns all the chat messages we could extract as human messages. When conversing with chat bots, conversations typically follow a more strict alternating dialogue pattern relative to real conversations. \n",
"\n",
"You can choose to merge message \"runs\" (consecutive messages from the same sender) and select a sender to represent the \"AI\". The fine-tuned LLM will learn to generate these AI messages."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "5a78030d-b757-4bbe-8a6c-841056f46df7",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_loaders.utils import (\n",
" merge_chat_runs,\n",
" map_ai_messages,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "ff35b028-78bf-4c5b-9ec6-939fe67de7f7",
"metadata": {},
"outputs": [],
"source": [
"merged_sessions = merge_chat_runs(chat_sessions)\n",
"alternating_sessions = list(map_ai_messages(merged_sessions, \"Harry Potter\"))"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "4b11906e-a496-4d01-9f0d-1938c14147bf",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[AIMessage(content=\"Professor Snape, I was hoping I could speak with you for a moment about something that's been concerning me lately.\", additional_kwargs={'sender': 'Harry Potter'}, example=False),\n",
" HumanMessage(content=\"What is it, Potter? I'm quite busy at the moment.\", additional_kwargs={'sender': 'Severus Snape'}, example=False),\n",
" AIMessage(content=\"I apologize for the interruption, sir. I'll be brief. I've noticed some strange activity around the school grounds at night. I saw a cloaked figure lurking near the Forbidden Forest last night. I'm worried someone may be plotting something sinister.\", additional_kwargs={'sender': 'Harry Potter'}, example=False)]"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Now all of Harry Potter's messages will take the AI message class\n",
"# which maps to the 'assistant' role in OpenAI's training format\n",
"alternating_sessions[0]['messages'][:3]"
]
},
{
"cell_type": "markdown",
"id": "d985478d-062e-47b9-ae9a-102f59be07c0",
"metadata": {},
"source": [
"#### Now we can convert to OpenAI format dictionaries"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "21372331",
"metadata": {},
"outputs": [],
"source": [
"from langchain.adapters.openai import convert_messages_for_finetuning"
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "92c5ae7a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Prepared 9 dialogues for training\n"
]
}
],
"source": [
"training_data = convert_messages_for_finetuning(alternating_sessions)\n",
"print(f\"Prepared {len(training_data)} dialogues for training\")"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "dfcbd181",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"[{'role': 'assistant',\n",
" 'content': \"Professor Snape, I was hoping I could speak with you for a moment about something that's been concerning me lately.\"},\n",
" {'role': 'user',\n",
" 'content': \"What is it, Potter? I'm quite busy at the moment.\"},\n",
" {'role': 'assistant',\n",
" 'content': \"I apologize for the interruption, sir. I'll be brief. I've noticed some strange activity around the school grounds at night. I saw a cloaked figure lurking near the Forbidden Forest last night. I'm worried someone may be plotting something sinister.\"}]"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"training_data[0][:3]"
]
},
{
"cell_type": "markdown",
"id": "f1a9fd64-4f9f-42d3-b5dc-2a340e51e9e7",
"metadata": {},
"source": [
"OpenAI currently requires at least 10 training examples for a fine-tuning job, though they recommend between 50-100 for most tasks. Since we only have 9 chat sessions, we can subdivide them (optionally with some overlap) so that each training example is comprised of a portion of a whole conversation.\n",
"\n",
"Facebook chat sessions (1 per person) often span multiple days and conversations,\n",
"so the long-range dependencies may not be that important to model anyhow."
]
},
{
"cell_type": "code",
"execution_count": 42,
"id": "13cd290a-b1e9-4686-bb5e-d99de8b8612b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"100"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Our chat is alternating, we will make each datapoint a group of 8 messages,\n",
"# with 2 messages overlapping\n",
"chunk_size = 8\n",
"overlap = 2\n",
"\n",
"training_examples = [\n",
" conversation_messages[i: i + chunk_size] \n",
" for conversation_messages in training_data\n",
" for i in range(\n",
" 0, len(conversation_messages) - chunk_size + 1, \n",
" chunk_size - overlap)\n",
"]\n",
"\n",
"len(training_examples)"
]
},
{
"cell_type": "markdown",
"id": "cc8baf41-ff07-4492-96bd-b2472ee7cef9",
"metadata": {},
"source": [
"## 4. Fine-tune the model\n",
"\n",
"It's time to fine-tune the model. Make sure you have `openai` installed\n",
"and have set your `OPENAI_API_KEY` appropriately"
]
},
{
"cell_type": "code",
"execution_count": 43,
"id": "95ce3f63-3c80-44b2-9060-534ad74e16fa",
"metadata": {},
"outputs": [],
"source": [
"# %pip install -U openai --quiet"
]
},
{
"cell_type": "code",
"execution_count": 58,
"id": "ab9e28eb",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"File file-zCyNBeg4snpbBL7VkvsuhCz8 ready afer 30.55 seconds.\n"
]
}
],
"source": [
"import json\n",
"from io import BytesIO\n",
"import time\n",
"\n",
"import openai\n",
"\n",
"# We will write the jsonl file in memory\n",
"my_file = BytesIO()\n",
"for m in training_examples:\n",
" my_file.write((json.dumps({\"messages\": m}) + \"\\n\").encode('utf-8'))\n",
"\n",
"my_file.seek(0)\n",
"training_file = openai.File.create(\n",
" file=my_file,\n",
" purpose='fine-tune'\n",
")\n",
"\n",
"# OpenAI audits each training file for compliance reasons.\n",
"# This make take a few minutes\n",
"status = openai.File.retrieve(training_file.id).status\n",
"start_time = time.time()\n",
"while status != \"processed\":\n",
" print(f\"Status=[{status}]... {time.time() - start_time:.2f}s\", end=\"\\r\", flush=True)\n",
" time.sleep(5)\n",
" status = openai.File.retrieve(training_file.id).status\n",
"print(f\"File {training_file.id} ready after {time.time() - start_time:.2f} seconds.\")"
]
},
{
"cell_type": "markdown",
"id": "759a7f51-fde9-4b75-aaa9-e600e6537bd1",
"metadata": {},
"source": [
"With the file ready, it's time to kick off a training job."
]
},
{
"cell_type": "code",
"execution_count": 59,
"id": "3f451425",
"metadata": {},
"outputs": [],
"source": [
"job = openai.FineTuningJob.create(\n",
" training_file=training_file.id,\n",
" model=\"gpt-3.5-turbo\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "489b23ef-5e14-42a9-bafb-44220ec6960b",
"metadata": {},
"source": [
"Grab a cup of tea while your model is being prepared. This may take some time!"
]
},
{
"cell_type": "code",
"execution_count": 60,
"id": "bac1637a-c087-4523-ade1-c47f9bf4c6f4",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Status=[running]... 908.87s\r"
]
}
],
"source": [
"status = openai.FineTuningJob.retrieve(job.id).status\n",
"start_time = time.time()\n",
"while status != \"succeeded\":\n",
" print(f\"Status=[{status}]... {time.time() - start_time:.2f}s\", end=\"\\r\", flush=True)\n",
" time.sleep(5)\n",
" job = openai.FineTuningJob.retrieve(job.id)\n",
" status = job.status"
]
},
{
"cell_type": "code",
"execution_count": 66,
"id": "535895e1-bc69-40e5-82ed-e24ed2baeeee",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ft:gpt-3.5-turbo-0613:personal::7rDwkaOq\n"
]
}
],
"source": [
"print(job.fine_tuned_model)"
]
},
{
"cell_type": "markdown",
"id": "502ff73b-f9e9-49ce-ba45-401811e57946",
"metadata": {},
"source": [
"## 5. Use in LangChain\n",
"\n",
"You can use the resulting model ID directly the `ChatOpenAI` model class."
]
},
{
"cell_type": "code",
"execution_count": 67,
"id": "3925d60d",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"\n",
"model = ChatOpenAI(\n",
" model=job.fine_tuned_model,\n",
" temperature=1,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 69,
"id": "7190cf2e-ab34-4ceb-bdad-45f24f069c29",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | model | StrOutputParser()"
]
},
{
"cell_type": "code",
"execution_count": 72,
"id": "f02057e9-f914-40b1-9c9d-9432ff594b98",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The usual - Potions, Transfiguration, Defense Against the Dark Arts. What about you?"
]
}
],
"source": [
"for tok in chain.stream({\"input\": \"What classes are you taking?\"}):\n",
" print(tok, end=\"\", flush=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "35331503-3cc6-4d64-955e-64afe6b5fef3",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}