mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
352 lines
12 KiB
Python
352 lines
12 KiB
Python
import re
|
|
import warnings
|
|
from typing import (
|
|
Any,
|
|
AsyncIterator,
|
|
Callable,
|
|
Dict,
|
|
Iterator,
|
|
List,
|
|
Mapping,
|
|
Optional,
|
|
)
|
|
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForLLMRun,
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models import BaseLanguageModel
|
|
from langchain_core.language_models.llms import LLM
|
|
from langchain_core.outputs import GenerationChunk
|
|
from langchain_core.prompt_values import PromptValue
|
|
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
|
|
from langchain_core.utils import (
|
|
check_package_version,
|
|
get_from_dict_or_env,
|
|
get_pydantic_field_names,
|
|
)
|
|
from langchain_core.utils.utils import build_extra_kwargs, convert_to_secret_str
|
|
|
|
|
|
class _AnthropicCommon(BaseLanguageModel):
|
|
client: Any = None #: :meta private:
|
|
async_client: Any = None #: :meta private:
|
|
model: str = Field(default="claude-2", alias="model_name")
|
|
"""Model name to use."""
|
|
|
|
max_tokens_to_sample: int = Field(default=256, alias="max_tokens")
|
|
"""Denotes the number of tokens to predict per generation."""
|
|
|
|
temperature: Optional[float] = None
|
|
"""A non-negative float that tunes the degree of randomness in generation."""
|
|
|
|
top_k: Optional[int] = None
|
|
"""Number of most likely tokens to consider at each step."""
|
|
|
|
top_p: Optional[float] = None
|
|
"""Total probability mass of tokens to consider at each step."""
|
|
|
|
streaming: bool = False
|
|
"""Whether to stream the results."""
|
|
|
|
default_request_timeout: Optional[float] = None
|
|
"""Timeout for requests to Anthropic Completion API. Default is 600 seconds."""
|
|
|
|
anthropic_api_url: Optional[str] = None
|
|
|
|
anthropic_api_key: Optional[SecretStr] = None
|
|
|
|
HUMAN_PROMPT: Optional[str] = None
|
|
AI_PROMPT: Optional[str] = None
|
|
count_tokens: Optional[Callable[[str], int]] = None
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
|
|
@root_validator(pre=True)
|
|
def build_extra(cls, values: Dict) -> Dict:
|
|
extra = values.get("model_kwargs", {})
|
|
all_required_field_names = get_pydantic_field_names(cls)
|
|
values["model_kwargs"] = build_extra_kwargs(
|
|
extra, values, all_required_field_names
|
|
)
|
|
return values
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key and python package exists in environment."""
|
|
values["anthropic_api_key"] = convert_to_secret_str(
|
|
get_from_dict_or_env(values, "anthropic_api_key", "ANTHROPIC_API_KEY")
|
|
)
|
|
# Get custom api url from environment.
|
|
values["anthropic_api_url"] = get_from_dict_or_env(
|
|
values,
|
|
"anthropic_api_url",
|
|
"ANTHROPIC_API_URL",
|
|
default="https://api.anthropic.com",
|
|
)
|
|
|
|
try:
|
|
import anthropic
|
|
|
|
check_package_version("anthropic", gte_version="0.3")
|
|
values["client"] = anthropic.Anthropic(
|
|
base_url=values["anthropic_api_url"],
|
|
api_key=values["anthropic_api_key"].get_secret_value(),
|
|
timeout=values["default_request_timeout"],
|
|
)
|
|
values["async_client"] = anthropic.AsyncAnthropic(
|
|
base_url=values["anthropic_api_url"],
|
|
api_key=values["anthropic_api_key"].get_secret_value(),
|
|
timeout=values["default_request_timeout"],
|
|
)
|
|
values["HUMAN_PROMPT"] = anthropic.HUMAN_PROMPT
|
|
values["AI_PROMPT"] = anthropic.AI_PROMPT
|
|
values["count_tokens"] = values["client"].count_tokens
|
|
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import anthropic python package. "
|
|
"Please it install it with `pip install anthropic`."
|
|
)
|
|
return values
|
|
|
|
@property
|
|
def _default_params(self) -> Mapping[str, Any]:
|
|
"""Get the default parameters for calling Anthropic API."""
|
|
d = {
|
|
"max_tokens_to_sample": self.max_tokens_to_sample,
|
|
"model": self.model,
|
|
}
|
|
if self.temperature is not None:
|
|
d["temperature"] = self.temperature
|
|
if self.top_k is not None:
|
|
d["top_k"] = self.top_k
|
|
if self.top_p is not None:
|
|
d["top_p"] = self.top_p
|
|
return {**d, **self.model_kwargs}
|
|
|
|
@property
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return {**{}, **self._default_params}
|
|
|
|
def _get_anthropic_stop(self, stop: Optional[List[str]] = None) -> List[str]:
|
|
if not self.HUMAN_PROMPT or not self.AI_PROMPT:
|
|
raise NameError("Please ensure the anthropic package is loaded")
|
|
|
|
if stop is None:
|
|
stop = []
|
|
|
|
# Never want model to invent new turns of Human / Assistant dialog.
|
|
stop.extend([self.HUMAN_PROMPT])
|
|
|
|
return stop
|
|
|
|
|
|
class Anthropic(LLM, _AnthropicCommon):
|
|
"""Anthropic large language models.
|
|
|
|
To use, you should have the ``anthropic`` python package installed, and the
|
|
environment variable ``ANTHROPIC_API_KEY`` set with your API key, or pass
|
|
it as a named parameter to the constructor.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
import anthropic
|
|
from langchain_community.llms import Anthropic
|
|
|
|
model = Anthropic(model="<model_name>", anthropic_api_key="my-api-key")
|
|
|
|
# Simplest invocation, automatically wrapped with HUMAN_PROMPT
|
|
# and AI_PROMPT.
|
|
response = model("What are the biggest risks facing humanity?")
|
|
|
|
# Or if you want to use the chat mode, build a few-shot-prompt, or
|
|
# put words in the Assistant's mouth, use HUMAN_PROMPT and AI_PROMPT:
|
|
raw_prompt = "What are the biggest risks facing humanity?"
|
|
prompt = f"{anthropic.HUMAN_PROMPT} {prompt}{anthropic.AI_PROMPT}"
|
|
response = model(prompt)
|
|
"""
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
allow_population_by_field_name = True
|
|
arbitrary_types_allowed = True
|
|
|
|
@root_validator()
|
|
def raise_warning(cls, values: Dict) -> Dict:
|
|
"""Raise warning that this class is deprecated."""
|
|
warnings.warn(
|
|
"This Anthropic LLM is deprecated. "
|
|
"Please use `from langchain_community.chat_models import ChatAnthropic` "
|
|
"instead"
|
|
)
|
|
return values
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "anthropic-llm"
|
|
|
|
def _wrap_prompt(self, prompt: str) -> str:
|
|
if not self.HUMAN_PROMPT or not self.AI_PROMPT:
|
|
raise NameError("Please ensure the anthropic package is loaded")
|
|
|
|
if prompt.startswith(self.HUMAN_PROMPT):
|
|
return prompt # Already wrapped.
|
|
|
|
# Guard against common errors in specifying wrong number of newlines.
|
|
corrected_prompt, n_subs = re.subn(r"^\n*Human:", self.HUMAN_PROMPT, prompt)
|
|
if n_subs == 1:
|
|
return corrected_prompt
|
|
|
|
# As a last resort, wrap the prompt ourselves to emulate instruct-style.
|
|
return f"{self.HUMAN_PROMPT} {prompt}{self.AI_PROMPT} Sure, here you go:\n"
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
r"""Call out to Anthropic's completion endpoint.
|
|
|
|
Args:
|
|
prompt: The prompt to pass into the model.
|
|
stop: Optional list of stop words to use when generating.
|
|
|
|
Returns:
|
|
The string generated by the model.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
prompt = "What are the biggest risks facing humanity?"
|
|
prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
|
|
response = model(prompt)
|
|
|
|
"""
|
|
if self.streaming:
|
|
completion = ""
|
|
for chunk in self._stream(
|
|
prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
|
|
):
|
|
completion += chunk.text
|
|
return completion
|
|
|
|
stop = self._get_anthropic_stop(stop)
|
|
params = {**self._default_params, **kwargs}
|
|
response = self.client.completions.create(
|
|
prompt=self._wrap_prompt(prompt),
|
|
stop_sequences=stop,
|
|
**params,
|
|
)
|
|
return response.completion
|
|
|
|
def convert_prompt(self, prompt: PromptValue) -> str:
|
|
return self._wrap_prompt(prompt.to_string())
|
|
|
|
async def _acall(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Call out to Anthropic's completion endpoint asynchronously."""
|
|
if self.streaming:
|
|
completion = ""
|
|
async for chunk in self._astream(
|
|
prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
|
|
):
|
|
completion += chunk.text
|
|
return completion
|
|
|
|
stop = self._get_anthropic_stop(stop)
|
|
params = {**self._default_params, **kwargs}
|
|
|
|
response = await self.async_client.completions.create(
|
|
prompt=self._wrap_prompt(prompt),
|
|
stop_sequences=stop,
|
|
**params,
|
|
)
|
|
return response.completion
|
|
|
|
def _stream(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[GenerationChunk]:
|
|
r"""Call Anthropic completion_stream and return the resulting generator.
|
|
|
|
Args:
|
|
prompt: The prompt to pass into the model.
|
|
stop: Optional list of stop words to use when generating.
|
|
Returns:
|
|
A generator representing the stream of tokens from Anthropic.
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
prompt = "Write a poem about a stream."
|
|
prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
|
|
generator = anthropic.stream(prompt)
|
|
for token in generator:
|
|
yield token
|
|
"""
|
|
stop = self._get_anthropic_stop(stop)
|
|
params = {**self._default_params, **kwargs}
|
|
|
|
for token in self.client.completions.create(
|
|
prompt=self._wrap_prompt(prompt), stop_sequences=stop, stream=True, **params
|
|
):
|
|
chunk = GenerationChunk(text=token.completion)
|
|
yield chunk
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
|
|
|
|
async def _astream(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> AsyncIterator[GenerationChunk]:
|
|
r"""Call Anthropic completion_stream and return the resulting generator.
|
|
|
|
Args:
|
|
prompt: The prompt to pass into the model.
|
|
stop: Optional list of stop words to use when generating.
|
|
Returns:
|
|
A generator representing the stream of tokens from Anthropic.
|
|
Example:
|
|
.. code-block:: python
|
|
prompt = "Write a poem about a stream."
|
|
prompt = f"\n\nHuman: {prompt}\n\nAssistant:"
|
|
generator = anthropic.stream(prompt)
|
|
for token in generator:
|
|
yield token
|
|
"""
|
|
stop = self._get_anthropic_stop(stop)
|
|
params = {**self._default_params, **kwargs}
|
|
|
|
async for token in await self.async_client.completions.create(
|
|
prompt=self._wrap_prompt(prompt),
|
|
stop_sequences=stop,
|
|
stream=True,
|
|
**params,
|
|
):
|
|
chunk = GenerationChunk(text=token.completion)
|
|
yield chunk
|
|
if run_manager:
|
|
await run_manager.on_llm_new_token(chunk.text, chunk=chunk)
|
|
|
|
def get_num_tokens(self, text: str) -> int:
|
|
"""Calculate number of tokens."""
|
|
if not self.count_tokens:
|
|
raise NameError("Please ensure the anthropic package is loaded")
|
|
return self.count_tokens(text)
|