mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
75 lines
2.2 KiB
Python
75 lines
2.2 KiB
Python
""" This file is for LLMRails Embedding """
|
|
from typing import Dict, List, Optional
|
|
|
|
import requests
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.pydantic_v1 import BaseModel, Extra, SecretStr, root_validator
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
|
|
|
|
|
class LLMRailsEmbeddings(BaseModel, Embeddings):
|
|
"""LLMRails embedding models.
|
|
|
|
To use, you should have the environment
|
|
variable ``LLM_RAILS_API_KEY`` set with your API key or pass it
|
|
as a named parameter to the constructor.
|
|
|
|
Model can be one of ["embedding-english-v1","embedding-multi-v1"]
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.embeddings import LLMRailsEmbeddings
|
|
cohere = LLMRailsEmbeddings(
|
|
model="embedding-english-v1", api_key="my-api-key"
|
|
)
|
|
"""
|
|
|
|
model: str = "embedding-english-v1"
|
|
"""Model name to use."""
|
|
|
|
api_key: Optional[SecretStr] = None
|
|
"""LLMRails API key."""
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key exists in environment."""
|
|
api_key = convert_to_secret_str(
|
|
get_from_dict_or_env(values, "api_key", "LLM_RAILS_API_KEY")
|
|
)
|
|
values["api_key"] = api_key
|
|
return values
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Call out to Cohere's embedding endpoint.
|
|
|
|
Args:
|
|
texts: The list of texts to embed.
|
|
|
|
Returns:
|
|
List of embeddings, one for each text.
|
|
"""
|
|
response = requests.post(
|
|
"https://api.llmrails.com/v1/embeddings",
|
|
headers={"X-API-KEY": self.api_key.get_secret_value()},
|
|
json={"input": texts, "model": self.model},
|
|
timeout=60,
|
|
)
|
|
return [item["embedding"] for item in response.json()["data"]]
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
"""Call out to Cohere's embedding endpoint.
|
|
|
|
Args:
|
|
text: The text to embed.
|
|
|
|
Returns:
|
|
Embeddings for the text.
|
|
"""
|
|
return self.embed_documents([text])[0]
|