mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
46542dc774
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
26 lines
1.1 KiB
Python
26 lines
1.1 KiB
Python
from langchain.embeddings import OpenAIEmbeddings
|
|
from langchain.retrievers.contextual_compression import ContextualCompressionRetriever
|
|
from langchain.retrievers.document_compressors import EmbeddingsFilter
|
|
from langchain.vectorstores import Chroma
|
|
|
|
|
|
def test_contextual_compression_retriever_get_relevant_docs() -> None:
|
|
"""Test get_relevant_docs."""
|
|
texts = [
|
|
"This is a document about the Boston Celtics",
|
|
"The Boston Celtics won the game by 20 points",
|
|
"I simply love going to the movies",
|
|
]
|
|
embeddings = OpenAIEmbeddings()
|
|
base_compressor = EmbeddingsFilter(embeddings=embeddings, similarity_threshold=0.75)
|
|
base_retriever = Chroma.from_texts(texts, embedding=embeddings).as_retriever(
|
|
search_kwargs={"k": len(texts)}
|
|
)
|
|
retriever = ContextualCompressionRetriever(
|
|
base_compressor=base_compressor, base_retriever=base_retriever
|
|
)
|
|
|
|
actual = retriever.get_relevant_documents("Tell me about the Celtics")
|
|
assert len(actual) == 2
|
|
assert texts[-1] not in [d.page_content for d in actual]
|