mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
160 lines
6.2 KiB
Python
160 lines
6.2 KiB
Python
import copy
|
|
import re
|
|
from typing import Any, Iterable, List, Optional, Sequence, Tuple
|
|
|
|
import numpy as np
|
|
from langchain_community.utils.math import (
|
|
cosine_similarity,
|
|
)
|
|
from langchain_core.documents import BaseDocumentTransformer, Document
|
|
from langchain_core.embeddings import Embeddings
|
|
|
|
|
|
def combine_sentences(sentences: List[dict], buffer_size: int = 1) -> List[dict]:
|
|
# Go through each sentence dict
|
|
for i in range(len(sentences)):
|
|
# Create a string that will hold the sentences which are joined
|
|
combined_sentence = ""
|
|
|
|
# Add sentences before the current one, based on the buffer size.
|
|
for j in range(i - buffer_size, i):
|
|
# Check if the index j is not negative
|
|
# (to avoid index out of range like on the first one)
|
|
if j >= 0:
|
|
# Add the sentence at index j to the combined_sentence string
|
|
combined_sentence += sentences[j]["sentence"] + " "
|
|
|
|
# Add the current sentence
|
|
combined_sentence += sentences[i]["sentence"]
|
|
|
|
# Add sentences after the current one, based on the buffer size
|
|
for j in range(i + 1, i + 1 + buffer_size):
|
|
# Check if the index j is within the range of the sentences list
|
|
if j < len(sentences):
|
|
# Add the sentence at index j to the combined_sentence string
|
|
combined_sentence += " " + sentences[j]["sentence"]
|
|
|
|
# Then add the whole thing to your dict
|
|
# Store the combined sentence in the current sentence dict
|
|
sentences[i]["combined_sentence"] = combined_sentence
|
|
|
|
return sentences
|
|
|
|
|
|
def calculate_cosine_distances(sentences: List[dict]) -> Tuple[List[float], List[dict]]:
|
|
distances = []
|
|
for i in range(len(sentences) - 1):
|
|
embedding_current = sentences[i]["combined_sentence_embedding"]
|
|
embedding_next = sentences[i + 1]["combined_sentence_embedding"]
|
|
|
|
# Calculate cosine similarity
|
|
similarity = cosine_similarity([embedding_current], [embedding_next])[0][0]
|
|
|
|
# Convert to cosine distance
|
|
distance = 1 - similarity
|
|
|
|
# Append cosine distance to the list
|
|
distances.append(distance)
|
|
|
|
# Store distance in the dictionary
|
|
sentences[i]["distance_to_next"] = distance
|
|
|
|
# Optionally handle the last sentence
|
|
# sentences[-1]['distance_to_next'] = None # or a default value
|
|
|
|
return distances, sentences
|
|
|
|
|
|
class SemanticChunker(BaseDocumentTransformer):
|
|
"""Splits the text based on semantic similarity.
|
|
|
|
Taken from Greg Kamradt's wonderful notebook:
|
|
https://github.com/FullStackRetrieval-com/RetrievalTutorials/blob/main/5_Levels_Of_Text_Splitting.ipynb
|
|
|
|
All credit to him.
|
|
|
|
At a high level, this splits into sentences, then groups into groups of 3
|
|
sentences, and then merges one that are similar in the embedding space.
|
|
"""
|
|
|
|
def __init__(self, embeddings: Embeddings, add_start_index: bool = False):
|
|
self._add_start_index = add_start_index
|
|
self.embeddings = embeddings
|
|
|
|
def split_text(self, text: str) -> List[str]:
|
|
"""Split text into multiple components."""
|
|
# Splitting the essay on '.', '?', and '!'
|
|
single_sentences_list = re.split(r"(?<=[.?!])\s+", text)
|
|
sentences = [
|
|
{"sentence": x, "index": i} for i, x in enumerate(single_sentences_list)
|
|
]
|
|
sentences = combine_sentences(sentences)
|
|
embeddings = self.embeddings.embed_documents(
|
|
[x["combined_sentence"] for x in sentences]
|
|
)
|
|
for i, sentence in enumerate(sentences):
|
|
sentence["combined_sentence_embedding"] = embeddings[i]
|
|
distances, sentences = calculate_cosine_distances(sentences)
|
|
start_index = 0
|
|
|
|
# Create a list to hold the grouped sentences
|
|
chunks = []
|
|
breakpoint_percentile_threshold = 95
|
|
breakpoint_distance_threshold = np.percentile(
|
|
distances, breakpoint_percentile_threshold
|
|
) # If you want more chunks, lower the percentile cutoff
|
|
|
|
indices_above_thresh = [
|
|
i for i, x in enumerate(distances) if x > breakpoint_distance_threshold
|
|
] # The indices of those breakpoints on your list
|
|
|
|
# Iterate through the breakpoints to slice the sentences
|
|
for index in indices_above_thresh:
|
|
# The end index is the current breakpoint
|
|
end_index = index
|
|
|
|
# Slice the sentence_dicts from the current start index to the end index
|
|
group = sentences[start_index : end_index + 1]
|
|
combined_text = " ".join([d["sentence"] for d in group])
|
|
chunks.append(combined_text)
|
|
|
|
# Update the start index for the next group
|
|
start_index = index + 1
|
|
|
|
# The last group, if any sentences remain
|
|
if start_index < len(sentences):
|
|
combined_text = " ".join([d["sentence"] for d in sentences[start_index:]])
|
|
chunks.append(combined_text)
|
|
return chunks
|
|
|
|
def create_documents(
|
|
self, texts: List[str], metadatas: Optional[List[dict]] = None
|
|
) -> List[Document]:
|
|
"""Create documents from a list of texts."""
|
|
_metadatas = metadatas or [{}] * len(texts)
|
|
documents = []
|
|
for i, text in enumerate(texts):
|
|
index = -1
|
|
for chunk in self.split_text(text):
|
|
metadata = copy.deepcopy(_metadatas[i])
|
|
if self._add_start_index:
|
|
index = text.find(chunk, index + 1)
|
|
metadata["start_index"] = index
|
|
new_doc = Document(page_content=chunk, metadata=metadata)
|
|
documents.append(new_doc)
|
|
return documents
|
|
|
|
def split_documents(self, documents: Iterable[Document]) -> List[Document]:
|
|
"""Split documents."""
|
|
texts, metadatas = [], []
|
|
for doc in documents:
|
|
texts.append(doc.page_content)
|
|
metadatas.append(doc.metadata)
|
|
return self.create_documents(texts, metadatas=metadatas)
|
|
|
|
def transform_documents(
|
|
self, documents: Sequence[Document], **kwargs: Any
|
|
) -> Sequence[Document]:
|
|
"""Transform sequence of documents by splitting them."""
|
|
return self.split_documents(list(documents))
|