mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
a0c2281540
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
164 lines
5.4 KiB
Python
164 lines
5.4 KiB
Python
"""Callback handler for promptlayer."""
|
|
|
|
from __future__ import annotations
|
|
|
|
import datetime
|
|
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple
|
|
from uuid import UUID
|
|
|
|
from langchain_core.callbacks import BaseCallbackHandler
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
BaseMessage,
|
|
ChatMessage,
|
|
HumanMessage,
|
|
SystemMessage,
|
|
)
|
|
from langchain_core.outputs import (
|
|
ChatGeneration,
|
|
LLMResult,
|
|
)
|
|
|
|
if TYPE_CHECKING:
|
|
import promptlayer
|
|
|
|
|
|
def _lazy_import_promptlayer() -> promptlayer:
|
|
"""Lazy import promptlayer to avoid circular imports."""
|
|
try:
|
|
import promptlayer
|
|
except ImportError:
|
|
raise ImportError(
|
|
"The PromptLayerCallbackHandler requires the promptlayer package. "
|
|
" Please install it with `pip install promptlayer`."
|
|
)
|
|
return promptlayer
|
|
|
|
|
|
class PromptLayerCallbackHandler(BaseCallbackHandler):
|
|
"""Callback handler for promptlayer."""
|
|
|
|
def __init__(
|
|
self,
|
|
pl_id_callback: Optional[Callable[..., Any]] = None,
|
|
pl_tags: Optional[List[str]] = None,
|
|
) -> None:
|
|
"""Initialize the PromptLayerCallbackHandler."""
|
|
_lazy_import_promptlayer()
|
|
self.pl_id_callback = pl_id_callback
|
|
self.pl_tags = pl_tags or []
|
|
self.runs: Dict[UUID, Dict[str, Any]] = {}
|
|
|
|
def on_chat_model_start(
|
|
self,
|
|
serialized: Dict[str, Any],
|
|
messages: List[List[BaseMessage]],
|
|
*,
|
|
run_id: UUID,
|
|
parent_run_id: Optional[UUID] = None,
|
|
tags: Optional[List[str]] = None,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
self.runs[run_id] = {
|
|
"messages": [self._create_message_dicts(m)[0] for m in messages],
|
|
"invocation_params": kwargs.get("invocation_params", {}),
|
|
"name": ".".join(serialized["id"]),
|
|
"request_start_time": datetime.datetime.now().timestamp(),
|
|
"tags": tags,
|
|
}
|
|
|
|
def on_llm_start(
|
|
self,
|
|
serialized: Dict[str, Any],
|
|
prompts: List[str],
|
|
*,
|
|
run_id: UUID,
|
|
parent_run_id: Optional[UUID] = None,
|
|
tags: Optional[List[str]] = None,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
self.runs[run_id] = {
|
|
"prompts": prompts,
|
|
"invocation_params": kwargs.get("invocation_params", {}),
|
|
"name": ".".join(serialized["id"]),
|
|
"request_start_time": datetime.datetime.now().timestamp(),
|
|
"tags": tags,
|
|
}
|
|
|
|
def on_llm_end(
|
|
self,
|
|
response: LLMResult,
|
|
*,
|
|
run_id: UUID,
|
|
parent_run_id: Optional[UUID] = None,
|
|
**kwargs: Any,
|
|
) -> None:
|
|
from promptlayer.utils import get_api_key, promptlayer_api_request
|
|
|
|
run_info = self.runs.get(run_id, {})
|
|
if not run_info:
|
|
return
|
|
run_info["request_end_time"] = datetime.datetime.now().timestamp()
|
|
for i in range(len(response.generations)):
|
|
generation = response.generations[i][0]
|
|
|
|
resp = {
|
|
"text": generation.text,
|
|
"llm_output": response.llm_output,
|
|
}
|
|
model_params = run_info.get("invocation_params", {})
|
|
is_chat_model = run_info.get("messages", None) is not None
|
|
model_input = (
|
|
run_info.get("messages", [])[i]
|
|
if is_chat_model
|
|
else [run_info.get("prompts", [])[i]]
|
|
)
|
|
model_response = (
|
|
[self._convert_message_to_dict(generation.message)]
|
|
if is_chat_model and isinstance(generation, ChatGeneration)
|
|
else resp
|
|
)
|
|
|
|
pl_request_id = promptlayer_api_request(
|
|
run_info.get("name"),
|
|
"langchain",
|
|
model_input,
|
|
model_params,
|
|
self.pl_tags,
|
|
model_response,
|
|
run_info.get("request_start_time"),
|
|
run_info.get("request_end_time"),
|
|
get_api_key(),
|
|
return_pl_id=bool(self.pl_id_callback is not None),
|
|
metadata={
|
|
"_langchain_run_id": str(run_id),
|
|
"_langchain_parent_run_id": str(parent_run_id),
|
|
"_langchain_tags": str(run_info.get("tags", [])),
|
|
},
|
|
)
|
|
|
|
if self.pl_id_callback:
|
|
self.pl_id_callback(pl_request_id)
|
|
|
|
def _convert_message_to_dict(self, message: BaseMessage) -> Dict[str, Any]:
|
|
if isinstance(message, HumanMessage):
|
|
message_dict = {"role": "user", "content": message.content}
|
|
elif isinstance(message, AIMessage):
|
|
message_dict = {"role": "assistant", "content": message.content}
|
|
elif isinstance(message, SystemMessage):
|
|
message_dict = {"role": "system", "content": message.content}
|
|
elif isinstance(message, ChatMessage):
|
|
message_dict = {"role": message.role, "content": message.content}
|
|
else:
|
|
raise ValueError(f"Got unknown type {message}")
|
|
if "name" in message.additional_kwargs:
|
|
message_dict["name"] = message.additional_kwargs["name"]
|
|
return message_dict
|
|
|
|
def _create_message_dicts(
|
|
self, messages: List[BaseMessage]
|
|
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
|
|
params: Dict[str, Any] = {}
|
|
message_dicts = [self._convert_message_to_dict(m) for m in messages]
|
|
return message_dicts, params
|