mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
64 lines
1.6 KiB
Python
64 lines
1.6 KiB
Python
from langchain_community.chat_models import ChatOpenAI
|
|
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
from langchain_community.vectorstores import Redis
|
|
from langchain_core.output_parsers import StrOutputParser
|
|
from langchain_core.prompts import ChatPromptTemplate
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
|
|
|
from rag_redis.config import (
|
|
EMBED_MODEL,
|
|
INDEX_NAME,
|
|
INDEX_SCHEMA,
|
|
REDIS_URL,
|
|
)
|
|
|
|
|
|
# Make this look better in the docs.
|
|
class Question(BaseModel):
|
|
__root__: str
|
|
|
|
|
|
# Init Embeddings
|
|
embedder = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
|
|
|
|
# Connect to pre-loaded vectorstore
|
|
# run the ingest.py script to populate this
|
|
vectorstore = Redis.from_existing_index(
|
|
embedding=embedder, index_name=INDEX_NAME, schema=INDEX_SCHEMA, redis_url=REDIS_URL
|
|
)
|
|
# TODO allow user to change parameters
|
|
retriever = vectorstore.as_retriever(search_type="mmr")
|
|
|
|
|
|
# Define our prompt
|
|
template = """
|
|
Use the following pieces of context from Nike's financial 10k filings
|
|
dataset to answer the question. Do not make up an answer if there is no
|
|
context provided to help answer it. Include the 'source' and 'start_index'
|
|
from the metadata included in the context you used to answer the question
|
|
|
|
Context:
|
|
---------
|
|
{context}
|
|
|
|
---------
|
|
Question: {question}
|
|
---------
|
|
|
|
Answer:
|
|
"""
|
|
|
|
|
|
prompt = ChatPromptTemplate.from_template(template)
|
|
|
|
|
|
# RAG Chain
|
|
model = ChatOpenAI(model_name="gpt-3.5-turbo-16k")
|
|
chain = (
|
|
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
|
|
| prompt
|
|
| model
|
|
| StrOutputParser()
|
|
).with_types(input_type=Question)
|