langchain/libs/partners/exa
2024-08-13 16:10:00 -07:00
..
langchain_exa [docs]: standardize tool docstrings (#25351) 2024-08-13 16:10:00 -07:00
scripts patch[Partners] Unified fix of incorrect variable declarations in all check_imports (#25014) 2024-08-03 13:49:41 -04:00
tests infra: update mypy 1.10, ruff 0.5 (#23721) 2024-07-03 10:33:27 -07:00
.gitignore
LICENSE
Makefile infra: update mypy 1.10, ruff 0.5 (#23721) 2024-07-03 10:33:27 -07:00
poetry.lock infra: update mypy 1.10, ruff 0.5 (#23721) 2024-07-03 10:33:27 -07:00
pyproject.toml all: add release notes to pypi (#24519) 2024-07-22 13:59:13 -07:00
README.md patch: deprecate (a)get_relevant_documents (#20477) 2024-04-22 11:14:53 -04:00

langchain-exa

This package contains the LangChain integrations for Exa Cloud generative models.

Installation

pip install -U langchain-exa

Exa Search Retriever

You can retrieve search results as follows

from langchain_exa import ExaSearchRetriever

exa_api_key = "YOUR API KEY"

# Create a new instance of the ExaSearchRetriever
exa = ExaSearchRetriever(exa_api_key=exa_api_key)

# Search for a query and save the results
results  = exa.invoke("What is the capital of France?")

# Print the results
print(results)

Exa Search Results

You can run the ExaSearchResults module as follows

from langchain_exa import ExaSearchResults

# Initialize the ExaSearchResults tool
search_tool = ExaSearchResults(exa_api_key="YOUR API KEY")

# Perform a search query
search_results = search_tool._run(
    query="When was the last time the New York Knicks won the NBA Championship?",
    num_results=5,
    text_contents_options=True,
    highlights=True
)

print("Search Results:", search_results)

Exa Find Similar Results

You can run the ExaFindSimilarResults module as follows

from langchain_exa import ExaFindSimilarResults

# Initialize the ExaFindSimilarResults tool
find_similar_tool = ExaFindSimilarResults(exa_api_key="YOUR API KEY")

# Find similar results based on a URL
similar_results = find_similar_tool._run(
    url="http://espn.com",
    num_results=5,
    text_contents_options=True,
    highlights=True
)

print("Similar Results:", similar_results)