langchain/docs/extras/integrations/llms/xinference.ipynb
Jiayi Ni 1efb9bae5f
FEAT: Integrate Xinference LLMs and Embeddings (#8171)
- [Xorbits
Inference(Xinference)](https://github.com/xorbitsai/inference) is a
powerful and versatile library designed to serve language, speech
recognition, and multimodal models. Xinference supports a variety of
GGML-compatible models including chatglm, whisper, and vicuna, and
utilizes heterogeneous hardware and a distributed architecture for
seamless cross-device and cross-server model deployment.
- This PR integrates Xinference models and Xinference embeddings into
LangChain.
- Dependencies: To install the depenedencies for this integration, run
    
    `pip install "xinference[all]"`
    
- Example Usage:

To start a local instance of Xinference, run `xinference`.

To deploy Xinference in a distributed cluster, first start an Xinference
supervisor using `xinference-supervisor`:

`xinference-supervisor -H "${supervisor_host}"`

Then, start the Xinference workers using `xinference-worker` on each
server you want to run them on.

`xinference-worker -e "http://${supervisor_host}:9997"`

To use Xinference with LangChain, you also need to launch a model. You
can use command line interface (CLI) to do so. Fo example: `xinference
launch -n vicuna-v1.3 -f ggmlv3 -q q4_0`. This launches a model named
vicuna-v1.3 with `model_format="ggmlv3"` and `quantization="q4_0"`. A
model UID is returned for you to use.

Now you can use Xinference with LangChain:

```python
from langchain.llms import Xinference

llm = Xinference(
    server_url="http://0.0.0.0:9997", # suppose the supervisor_host is "0.0.0.0"
    model_uid = {model_uid} # model UID returned from launching a model
)

llm(
    prompt="Q: where can we visit in the capital of France? A:",
    generate_config={"max_tokens": 1024},
)
```

You can also use RESTful client to launch a model:
```python
from xinference.client import RESTfulClient

client = RESTfulClient("http://0.0.0.0:9997")

model_uid = client.launch_model(model_name="vicuna-v1.3", model_size_in_billions=7, quantization="q4_0")
```

The following code block demonstrates how to use Xinference embeddings
with LangChain:
```python
from langchain.embeddings import XinferenceEmbeddings

xinference = XinferenceEmbeddings(
    server_url="http://0.0.0.0:9997",
    model_uid = model_uid
)
```

```python
query_result = xinference.embed_query("This is a test query")
```

```python
doc_result = xinference.embed_documents(["text A", "text B"])
```

Xinference is still under rapid development. Feel free to [join our
Slack
community](https://xorbitsio.slack.com/join/shared_invite/zt-1z3zsm9ep-87yI9YZ_B79HLB2ccTq4WA)
to get the latest updates!

- Request for review: @hwchase17, @baskaryan
- Twitter handle: https://twitter.com/Xorbitsio

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 21:23:19 -07:00

177 lines
4.6 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Xorbits Inference (Xinference)\n",
"\n",
"[Xinference](https://github.com/xorbitsai/inference) is a powerful and versatile library designed to serve LLMs, \n",
"speech recognition models, and multimodal models, even on your laptop. It supports a variety of models compatible with GGML, such as chatglm, baichuan, whisper, vicuna, orca, and many others. This notebook demonstrates how to use Xinference with LangChain."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Installation\n",
"\n",
"Install `Xinference` through PyPI:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install \"xinference[all]\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Deploy Xinference Locally or in a Distributed Cluster.\n",
"\n",
"For local deployment, run `xinference`. \n",
"\n",
"To deploy Xinference in a cluster, first start an Xinference supervisor using the `xinference-supervisor`. You can also use the option -p to specify the port and -H to specify the host. The default port is 9997.\n",
"\n",
"Then, start the Xinference workers using `xinference-worker` on each server you want to run them on. \n",
"\n",
"You can consult the README file from [Xinference](https://github.com/xorbitsai/inference) for more information.\n",
"## Wrapper\n",
"\n",
"To use Xinference with LangChain, you need to first launch a model. You can use command line interface (CLI) to do so:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model uid: 7167b2b0-2a04-11ee-83f0-d29396a3f064\n"
]
}
],
"source": [
"!xinference launch -n vicuna-v1.3 -f ggmlv3 -q q4_0"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A model UID is returned for you to use. Now you can use Xinference with LangChain:"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"' You can visit the Eiffel Tower, Notre-Dame Cathedral, the Louvre Museum, and many other historical sites in Paris, the capital of France.'"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.llms import Xinference\n",
"\n",
"llm = Xinference(\n",
" server_url=\"http://0.0.0.0:9997\",\n",
" model_uid = \"7167b2b0-2a04-11ee-83f0-d29396a3f064\"\n",
")\n",
"\n",
"llm(\n",
" prompt=\"Q: where can we visit in the capital of France? A:\",\n",
" generate_config={\"max_tokens\": 1024, \"stream\": True},\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Integrate with a LLMChain"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"A: You can visit many places in Paris, such as the Eiffel Tower, the Louvre Museum, Notre-Dame Cathedral, the Champs-Elysées, Montmartre, Sacré-Cœur, and the Palace of Versailles.\n"
]
}
],
"source": [
"from langchain import PromptTemplate, LLMChain\n",
"\n",
"template = \"Where can we visit in the capital of {country}?\"\n",
"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"country\"])\n",
"\n",
"llm_chain = LLMChain(prompt=prompt, llm=llm)\n",
"\n",
"generated = llm_chain.run(country=\"France\")\n",
"print(generated)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Lastly, terminate the model when you do not need to use it:"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"!xinference terminate --model-uid \"7167b2b0-2a04-11ee-83f0-d29396a3f064\""
]
}
],
"metadata": {
"kernelspec": {
"display_name": "myenv3.9",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.11"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}