mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
192 lines
5.3 KiB
Plaintext
192 lines
5.3 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "9e9b7651",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Azure OpenAI\n",
|
|
"\n",
|
|
"This notebook goes over how to use Langchain with [Azure OpenAI](https://aka.ms/azure-openai).\n",
|
|
"\n",
|
|
"The Azure OpenAI API is compatible with OpenAI's API. The `openai` Python package makes it easy to use both OpenAI and Azure OpenAI. You can call Azure OpenAI the same way you call OpenAI with the exceptions noted below.\n",
|
|
"\n",
|
|
"## API configuration\n",
|
|
"You can configure the `openai` package to use Azure OpenAI using environment variables. The following is for `bash`:\n",
|
|
"\n",
|
|
"```bash\n",
|
|
"# Set this to `azure`\n",
|
|
"export OPENAI_API_TYPE=azure\n",
|
|
"# The API version you want to use: set this to `2023-05-15` for the released version.\n",
|
|
"export OPENAI_API_VERSION=2023-05-15\n",
|
|
"# The base URL for your Azure OpenAI resource. You can find this in the Azure portal under your Azure OpenAI resource.\n",
|
|
"export OPENAI_API_BASE=https://your-resource-name.openai.azure.com\n",
|
|
"# The API key for your Azure OpenAI resource. You can find this in the Azure portal under your Azure OpenAI resource.\n",
|
|
"export OPENAI_API_KEY=<your Azure OpenAI API key>\n",
|
|
"```\n",
|
|
"\n",
|
|
"Alternatively, you can configure the API right within your running Python environment:\n",
|
|
"\n",
|
|
"```python\n",
|
|
"import os\n",
|
|
"os.environ[\"OPENAI_API_TYPE\"] = \"azure\"\n",
|
|
"...\n",
|
|
"```\n",
|
|
"\n",
|
|
"## Deployments\n",
|
|
"With Azure OpenAI, you set up your own deployments of the common GPT-3 and Codex models. When calling the API, you need to specify the deployment you want to use.\n",
|
|
"\n",
|
|
"_**Note**: These docs are for the Azure text completion models. Models like GPT-4 are chat models. They have a slightly different interface, and can be accessed via the `AzureChatOpenAI` class. For docs on Azure chat see [Azure Chat OpenAI documentation](/docs/integrations/chat/azure_chat_openai)._\n",
|
|
"\n",
|
|
"Let's say your deployment name is `text-davinci-002-prod`. In the `openai` Python API, you can specify this deployment with the `engine` parameter. For example:\n",
|
|
"\n",
|
|
"```python\n",
|
|
"import openai\n",
|
|
"\n",
|
|
"response = openai.Completion.create(\n",
|
|
" engine=\"text-davinci-002-prod\",\n",
|
|
" prompt=\"This is a test\",\n",
|
|
" max_tokens=5\n",
|
|
")\n",
|
|
"```\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "89fdb593-5a42-4098-87b7-1496fa511b1c",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"!pip install openai"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "faacfa54",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import os\n",
|
|
"\n",
|
|
"os.environ[\"OPENAI_API_TYPE\"] = \"azure\"\n",
|
|
"os.environ[\"OPENAI_API_VERSION\"] = \"2023-05-15\"\n",
|
|
"os.environ[\"OPENAI_API_BASE\"] = \"...\"\n",
|
|
"os.environ[\"OPENAI_API_KEY\"] = \"...\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "8fad2a6e",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Import Azure OpenAI\n",
|
|
"from langchain.llms import AzureOpenAI"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "8c80213a",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Create an instance of Azure OpenAI\n",
|
|
"# Replace the deployment name with your own\n",
|
|
"llm = AzureOpenAI(\n",
|
|
" deployment_name=\"td2\",\n",
|
|
" model_name=\"text-davinci-002\",\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "592dc404",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"\"\\n\\nWhy couldn't the bicycle stand up by itself? Because it was...two tired!\""
|
|
]
|
|
},
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Run the LLM\n",
|
|
"llm(\"Tell me a joke\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "bbfebea1",
|
|
"metadata": {},
|
|
"source": [
|
|
"We can also print the LLM and see its custom print."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "9c33fa19",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\u001b[1mAzureOpenAI\u001b[0m\n",
|
|
"Params: {'deployment_name': 'text-davinci-002', 'model_name': 'text-davinci-002', 'temperature': 0.7, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'best_of': 1}\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"print(llm)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "5a8b5917",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.3"
|
|
},
|
|
"vscode": {
|
|
"interpreter": {
|
|
"hash": "3bae61d45a4f4d73ecea8149862d4bfbae7d4d4a2f71b6e609a1be8f6c8d4298"
|
|
}
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|