mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
fbe592a5ce
fixes typo in pip install message for the pgvecto_rs community vector store no issues found mentioning this no dependents changed
246 lines
7.6 KiB
Python
246 lines
7.6 KiB
Python
from __future__ import annotations
|
|
|
|
import uuid
|
|
from typing import Any, Dict, Iterable, List, Literal, Optional, Tuple, Union
|
|
|
|
from langchain_core.documents import Document
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.vectorstores import VectorStore
|
|
|
|
|
|
class PGVecto_rs(VectorStore):
|
|
"""VectorStore backed by pgvecto_rs."""
|
|
|
|
_store = None
|
|
_embedding: Embeddings
|
|
|
|
def __init__(
|
|
self,
|
|
embedding: Embeddings,
|
|
dimension: int,
|
|
db_url: str,
|
|
collection_name: str,
|
|
new_table: bool = False,
|
|
) -> None:
|
|
"""Initialize a PGVecto_rs vectorstore.
|
|
|
|
Args:
|
|
embedding: Embeddings to use.
|
|
dimension: Dimension of the embeddings.
|
|
db_url: Database URL.
|
|
collection_name: Name of the collection.
|
|
new_table: Whether to create a new table or connect to an existing one.
|
|
If true, the table will be dropped if exists, then recreated.
|
|
Defaults to False.
|
|
"""
|
|
try:
|
|
from pgvecto_rs.sdk import PGVectoRs
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Unable to import pgvector_rs.sdk , please install with "
|
|
'`pip install "pgvecto_rs[sdk]"`.'
|
|
) from e
|
|
self._store = PGVectoRs(
|
|
db_url=db_url,
|
|
collection_name=collection_name,
|
|
dimension=dimension,
|
|
recreate=new_table,
|
|
)
|
|
self._embedding = embedding
|
|
|
|
# ================ Create interface =================
|
|
@classmethod
|
|
def from_texts(
|
|
cls,
|
|
texts: List[str],
|
|
embedding: Embeddings,
|
|
metadatas: Optional[List[dict]] = None,
|
|
db_url: str = "",
|
|
collection_name: str = str(uuid.uuid4().hex),
|
|
**kwargs: Any,
|
|
) -> PGVecto_rs:
|
|
"""Return VectorStore initialized from texts and optional metadatas."""
|
|
sample_embedding = embedding.embed_query("Hello pgvecto_rs!")
|
|
dimension = len(sample_embedding)
|
|
if db_url is None:
|
|
raise ValueError("db_url must be provided")
|
|
_self: PGVecto_rs = cls(
|
|
embedding=embedding,
|
|
dimension=dimension,
|
|
db_url=db_url,
|
|
collection_name=collection_name,
|
|
)
|
|
_self.add_texts(texts, metadatas, **kwargs)
|
|
return _self
|
|
|
|
@classmethod
|
|
def from_documents(
|
|
cls,
|
|
documents: List[Document],
|
|
embedding: Embeddings,
|
|
db_url: str = "",
|
|
collection_name: str = str(uuid.uuid4().hex),
|
|
**kwargs: Any,
|
|
) -> PGVecto_rs:
|
|
"""Return VectorStore initialized from documents."""
|
|
texts = [document.page_content for document in documents]
|
|
metadatas = [document.metadata for document in documents]
|
|
return cls.from_texts(
|
|
texts, embedding, metadatas, db_url, collection_name, **kwargs
|
|
)
|
|
|
|
@classmethod
|
|
def from_collection_name(
|
|
cls,
|
|
embedding: Embeddings,
|
|
db_url: str,
|
|
collection_name: str,
|
|
) -> PGVecto_rs:
|
|
"""Create new empty vectorstore with collection_name.
|
|
Or connect to an existing vectorstore in database if exists.
|
|
Arguments should be the same as when the vectorstore was created."""
|
|
sample_embedding = embedding.embed_query("Hello pgvecto_rs!")
|
|
return cls(
|
|
embedding=embedding,
|
|
dimension=len(sample_embedding),
|
|
db_url=db_url,
|
|
collection_name=collection_name,
|
|
)
|
|
|
|
# ================ Insert interface =================
|
|
|
|
def add_texts(
|
|
self,
|
|
texts: Iterable[str],
|
|
metadatas: Optional[List[dict]] = None,
|
|
**kwargs: Any,
|
|
) -> List[str]:
|
|
"""Run more texts through the embeddings and add to the vectorstore.
|
|
|
|
Args:
|
|
texts: Iterable of strings to add to the vectorstore.
|
|
metadatas: Optional list of metadatas associated with the texts.
|
|
kwargs: vectorstore specific parameters
|
|
|
|
Returns:
|
|
List of ids of the added texts.
|
|
|
|
"""
|
|
from pgvecto_rs.sdk import Record
|
|
|
|
embeddings = self._embedding.embed_documents(list(texts))
|
|
records = [
|
|
Record.from_text(text, embedding, meta)
|
|
for text, embedding, meta in zip(texts, embeddings, metadatas or [])
|
|
]
|
|
self._store.insert(records)
|
|
return [str(record.id) for record in records]
|
|
|
|
def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]:
|
|
"""Run more documents through the embeddings and add to the vectorstore.
|
|
|
|
Args:
|
|
documents (List[Document]): List of documents to add to the vectorstore.
|
|
|
|
Returns:
|
|
List of ids of the added documents.
|
|
"""
|
|
return self.add_texts(
|
|
[document.page_content for document in documents],
|
|
[document.metadata for document in documents],
|
|
**kwargs,
|
|
)
|
|
|
|
# ================ Query interface =================
|
|
def similarity_search_with_score_by_vector(
|
|
self,
|
|
query_vector: List[float],
|
|
k: int = 4,
|
|
distance_func: Literal[
|
|
"sqrt_euclid", "neg_dot_prod", "ned_cos"
|
|
] = "sqrt_euclid",
|
|
filter: Union[None, Dict[str, Any], Any] = None,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Return docs most similar to query vector, with its score."""
|
|
|
|
from pgvecto_rs.sdk.filters import meta_contains
|
|
|
|
distance_func_map = {
|
|
"sqrt_euclid": "<->",
|
|
"neg_dot_prod": "<#>",
|
|
"ned_cos": "<=>",
|
|
}
|
|
if filter is None:
|
|
real_filter = None
|
|
elif isinstance(filter, dict):
|
|
real_filter = meta_contains(filter)
|
|
else:
|
|
real_filter = filter
|
|
results = self._store.search(
|
|
query_vector,
|
|
distance_func_map[distance_func],
|
|
k,
|
|
filter=real_filter,
|
|
)
|
|
|
|
return [
|
|
(
|
|
Document(
|
|
page_content=res[0].text,
|
|
metadata=res[0].meta,
|
|
),
|
|
res[1],
|
|
)
|
|
for res in results
|
|
]
|
|
|
|
def similarity_search_by_vector(
|
|
self,
|
|
embedding: List[float],
|
|
k: int = 4,
|
|
distance_func: Literal[
|
|
"sqrt_euclid", "neg_dot_prod", "ned_cos"
|
|
] = "sqrt_euclid",
|
|
filter: Optional[Any] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
return [
|
|
doc
|
|
for doc, _score in self.similarity_search_with_score_by_vector(
|
|
embedding, k, distance_func, **kwargs
|
|
)
|
|
]
|
|
|
|
def similarity_search_with_score(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
distance_func: Literal[
|
|
"sqrt_euclid", "neg_dot_prod", "ned_cos"
|
|
] = "sqrt_euclid",
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
query_vector = self._embedding.embed_query(query)
|
|
return self.similarity_search_with_score_by_vector(
|
|
query_vector, k, distance_func, **kwargs
|
|
)
|
|
|
|
def similarity_search(
|
|
self,
|
|
query: str,
|
|
k: int = 4,
|
|
distance_func: Literal[
|
|
"sqrt_euclid", "neg_dot_prod", "ned_cos"
|
|
] = "sqrt_euclid",
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Return docs most similar to query."""
|
|
query_vector = self._embedding.embed_query(query)
|
|
return [
|
|
doc
|
|
for doc, _score in self.similarity_search_with_score_by_vector(
|
|
query_vector, k, distance_func, **kwargs
|
|
)
|
|
]
|